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Chapter 2
Bayesian Decision Theory
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Bayesian Decision Theory

m Bayesian decision theory is a statistical
approach to data mining/pattern recognition

m Mathematical foundation for decision making

m Using probabilistic approach to help making
decision so as to minimize the risk (cost).
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Bayesian Decision Theory _I

m Basic Assumptions

The decision problem is posed (formalized) in
probabilistic terms

All the relevant probability values are known

m Key Principle

Bayes Theorem
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Preliminaries and Notations _I

w; € {wq, w5, ..., w.}: a state of nature
P(w,): prior probability
x : feature vector
p(X): evidence probability

p(x|w,): class-conditional
density / likelihood

P(w, | x): posterior probability
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Decision Before Observation _I

m The Problem
To make a decision where
0 Prior probability is known
oNo observation is allowed

m Naive Decision Rule
Decide o, if P(w,) > P(w,), otherwise o,

m Thisis the best we can do without observation

m Fixed prior probabilities -> Same decisions all
time
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Bayes Theorem

P(e, | x) = p(x| o) P(®,)
p(x)

px) =Y p(x| @)P(@) 4

Thomas Bayes
(1702-1761)
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Decision After Observation _I

P(e, | x) = p(x|o,)P(®,)

P(X)=
unimportant in
making decision

D(x) = argmax P(w, | X)




Decision After Observation _I

px|w)P(w,)

P(a)i|x):

p(x)

Bayes
Forr

) 4 )

Known Unknown
Prior probability Posterior
Class-conditional probability
pdf
Observation

P(w, | x):
\_ J \ _/
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Special Cases _I

likelithood x prior j
evidence

P(e,|x) = p(x| ) P(w,)
p(X)

m Case |: Equal prior probability
P(o,)=P(»,)=- - =P(w.)=1/c
Depends on the likelihood p(x|®))

m Case lI: Equal likelihood

p(x|o)=p(x|w,) = - = p(x|o,)
Degenerate to nalve decision rule

m Normally, prior probability and likelihood function
together in Bayesian decision process

(posterior =
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An example _I

plxlw)

04 ®,: sea bass P(w,)=2/3
®,: salmon P(w,)=1/3

031 w,

What will the
posterior
probability for
either type of fish
look like™?

= X
9 10 11 12 13 14 15

class-conditional pdf for lightness

Decide o, if p(x|w,)P(®,) > p(x|w,)P(w,); otherwise decide w,
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An example _I

h-axis: lightness of fish scales
v-axis: posterior probability for
each type of fish

Black curve: sea bass

Red curve: salmon

»For each value of x, the higher
curve yields the output of
Bayesian decision

»For each value of x, the

posterior probability for either type of fish ﬁ)oosteriors of either curve sum to
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Another Example _I

m Problem statement

A new medical test is used to detect whether a patient has a
certain cancer or not, whose test result is either + (positive) or —
(negative)

For patient with this cancer, the probability of returning positive
test result is 0.98

For patient without this cancer, the probability of returning
negative test result is 0.97

The probability for any person to have this cancer is 0.008

m Question
If positive test result is returned, does she/he have cancer?
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Another Example (Cont.) _I

Wh + cancer W N0 cancer = {+‘ _}
Plws) = 0.008 Plws) = 1= Plwy) = 0.992

P(+ | wi) =0.98 P-lw))=1-P(+|wy) =0.02

P(-|w2) =0.97 P(+|ws)=1-P(-|ws) =0.03

Plwy | +) = Pwi)P(+ | wi) _ Pwi)P(+ | wi)
L= P(+) — P(w1)P(+ | w1) + P(w2) P(+ | w2)
0.008 x 0.98

= ().2085

~ 0.008 X 0,98 + 0.992 % 0.03

P(ws | +) > P(wi|+)

Plwa | +)=1— Plw|+) = 0.7915
(wz ] 4) (wrl+) No cancer!
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Feasibility of Bayes Formula _I

p(x| a)i)P(a)i)
p(x)

m To compute posterior probability, we need to
know prior probability and likelihood

P(w, |x) =

likelihood x priorj

posterior = .
evidence

(H ) />A simple solution: Counting \
ow do we Relative frequencies
know these B
probabilities > An advanced solution: Conduct
? Density estimation
\ _/

- /
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A Further Example _I

m Problem

Based on the height of a car in some campus, decide
whether it costs more than $50,000 or not

@, :price >$ 50,000 oo i
o, : price <=§ 50,000 |
x :height of a car

Quantities to know: ‘ Counting relative
EP((Dl) P(o,) P(x|o;) P(x|o,)
' How to get them?

__________________________________________________

frequencies via
collected samples
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A Further Example (Cont.) _I

m Collecting samples

Suppose we have randomly picked 1209 cars in the
campus, got prices from their owners, and measured

their heights
m Compute P(w,) and P(w,)
. N (-2 o
# cars in ©, : 221 1209
B
# cars in o, : 988 P(w,) _ 288 817
\_ J 1209

\ J
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A Further Example (Cont.)

m Compute P(x|o,) P(x|w,)
m Discretize the height spectrum (say [0.5m, 2.5m]) into 20

intervals each with length 0.1m, and then count the number of
cars falling into each interval for either class

m Suppose x = 1.05 , which means
that x falls into interval

Ix =11.0m, 1.1m]
____________________ - a6
i For w,, # cars in Ix is 46, - Pla=1.05] @)= =0208]
: : 59
'For w,, # cars in Ixis 59, P(x=1-05|w2)=@=0-0597
e e e e e e e e e e e ———— | \ )
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A Further Example (Cont.) _I

m Question
For a car with height 1.05m, is its price greater than
$50,0007?
-
P(w,) _ 221 :0.183\ (P(x 1.05|w, ) = 46 2081
1209 221
988
P(wz)—1209—0817 P(x=1.05|a)2)=£:0.0597
\ Y \ 988 y
(P(o, | x=1.05) P(w,)P(x=1.05|a,) | P(@)P(x=1.05| @) R
P(w |x=1.05)  P(x=1.05) P(x=1.05)

_ P(@,)P(x=1.05|@,) _0.817x0.0597 P(m,]x) < P(®,|x),
\P(a)l )P(x=1.05|w,) 0.183x0.2081 price<=$50,000 p
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Is Bayes Decision Rule Optimal_l

m Consider two categories
Decide o, if P(w,|x) > P(w,|x); otherwise decide m,
m When we observe x, the probability of error is:

P(w, |x) if wedecide o,

P(error|x) = {

P(w, | x) 1f we decide w,

4 - )
Thus, under Bayes decision rule, we have

P(error | x) =min[ P(w, | X), P(w, | X)]
\ Y,

For every x, we ensure that P(error|x) is as small as possible
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Plu|x)

Is Bayes Decision

m Consider two categories
Decide o, if P(»,|x) > P(m,|x
® WWhen we observe X, the |

g fit i 12 i3 i4 15

P(w, |x) if wedecide o,

P(w, | x) 1f we decide w,

P(error|x) = {

4 - h
Thus, under Bayes decision rule, we have

P(error | x) =min[ P(w, | X), P(w, | X)]
. Y,

For every x, we ensure that P(error|x) is as small as possible
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Generalized Bayes Decision Rule I

m Allowing to use more than one feature

xeR=xeRY: d-dimensional Euclidean Space
m Allowing more than two states of nature

N ={wq,wsy, .., W, }: aset of ¢ states of nature

m Allowing actions other than merely deciding the
state of nature

A={a,ay,..,ay}. asetofapossible acions

Note that c#a
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Generalized Bayes Decision Rule (cont.) I

m Introducing a loss function more general than
the probability of error

A:Q xA— R (loss function)
A; = Uw;, ;) the loss incurred for taking action ¢,

when the state of nature is o}

For ease of reference, it ,
. . | A =Aa |w):
Is usually written as: Y P

We want to minimize the expected loss in making decision.

g
Risk
Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University




Generalized Bayes Decision Rule (cont.) I

= Introdi A simple loss function ' than
vy = (¥o = ¥y =

the pr -"l?w-irn- A"| “Recipe B”| “No Recipe”

wh = “cancer” 5 50 10,000
ﬂ/ we = “no cancer” 60 3 0

A; = Uw;, ;) the loss incurred for taking action ¢,

when the state of nature is o}

For ease of reference, it ,
. . | L =Aca |w,):
IS usually written as: i P

We want to minimize the expected loss in making decision.

g
Risk
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Generalized Bayes N~niginn Dutla f~~iat)) I

wy = “cancer” 5 50 10,000
m Problem e e B -
Given a particular x, we have to decide which action
to take

To do this, we need to know the loss of taking each
action a, (1<i<a)

fl—lowever, the true state\

= , ) of nature is uncertain
A =Ma; |o;): L

The action True state of Expecteldos(sve rage)
being takenal. nature a)j

\- /

We want to minimize the expected loss in making decision.

Risk
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Generalized Bay ) (cont.)

szen X, the expected loss (rzsk)
associated with taking action
a.

R(a, |x) = Zz(a |w,)P(@, | X) _Z/I P(o, |x)

m Expected |6

The incurred loss of A (The probability of ).
taking action . in being the true state of
case of true state of nature
nature being .

. / J L J

The expected loss Is also named as “conditional risk”
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Generalized Bayes Decision Rule (cont.) I

m Suppose we have:

_ o . — (- . )
- “= 1= e For a particular x:
“Recipe A" | “Recipe B"| “No Recipe
P(04]X) =0.01

wy = “cancer” 5 50 10,000

wh = “no cancer” 60 3 0 \P((Dle) - 099 )
9

R(o | x) = '_}_=L May | wj) - Plw; | x)

= Al | id]) : F(Lﬂl | X) + )‘(”] | wa) + Pws ‘ X)
5 x 0.01 + 60 x 0,99 = 59.45

Similarly, we can get: R(as | x) =3.47 R(as | x) = 100
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Generalized Bayes Decision Rule (cont.) I

m 0/1 Loss Function

R(a, %)= Y Ae, |0,)P@, |x) =Y 4, P, | )

0 «;1sa correct decision assiciated with o,

Aa, |wj>={

1 otherwise

m=) R(a, |x)= P(error|x)
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Generalized Bayes Decision Rule (cont.) I

m Bayes decision rule (general case)

a(x) =argmin R(¢, | X) = arg minZﬂ(ai |@;)P(w; | x)

a;€A a;ed o

m Overall risk

R= j R(a(x)| %) p(x)dx

Decision function
4 N . . )
For every x, we ensure that the conditional risk R(a(x)|x) is as small as
possible; Thus, the overall risk over all possible x must be as small as
possible.
\_ .

The optimal one to minimize the overall risk,
Its resulting overall risk is called the Bayesian risk,
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General Case: Two-Category _I

State of Nature

Loss Function 0 0
Q= {wl ’ 0)2} 211 2,12
= a
A={a,a} & G| Mo
aZ 1’21 1’22

R(a, | x) = 4, P(, | X) + 4, P(®, | X)
R(a, [x) =4, P(@, | X)+ 4, P(®, | X)

School of Computer Science and Technology, Shandong University
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General Case: Two-Category _I

Perform o, 1f \R(oc2|x) > R(oc1|x5 otherwise perform o,

) 4, P | X)+ A, P(@, | X) > 4, P(o, | X) + A4, P(@, | X)

) (A — A4 P(@, | x) > (4, —4,,)P(w, | X)

R(a, | x) =4, P(@ | x)+ 4,P(@, | x)

R(a, | x) =4, P(w | x)+ 4,,P(w, | X)
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General Case: Two-Category _I

Perform o, 1f kR(oc2|x) > R(oc1|x5 otherwise perform o,

) A P(o | x)+ A, P(w, | xX) > A4 P(o, | X)+ 4, P(o, | X)
) (4, — A4 P(o | x) > (4, - 4,,)P(w, | X)

Y Y
positive positive

Posterior probabilities are scaled before comparison.
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General Case: Two-Category _I

Perform o, 1f kR(oc2|x) > R(oc1|x5 otherwise perform o,

) 4, P | X)+ A, P(@, | X) > 4, P(o, | X) + A4, P(@, | X)
) (4, —A)P(@, [X) > (4, = 1) P(@, | X)

) (A — A4 p(x| @) P(w) > (4, —A,) p(x| @,) P(w,)

I px|w) (4,-4,) P(w,)
p(x|w,) g (4 —4,) Plo)
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General Case: Two-Category _I

Likellﬁood Threshold
Ratio

s A N\ e - I
p(x|w) S (4, —4,,) P(w,)

mmm) Perform o if p(x|w,) (A4 —4,) P(o)
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Discriminant Function _I

m Discriminant functions for multicategory

g (x):R" >R (1<i<c)

m One function per category

g(x)
X £.(%) Action |, (X(X)
. (e.g., classification)
. Assign x to o, If
g/x) gi(x) > g(x) for all j = 1.
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Discriminant Function _I

® Minimum Risk Case:
g,(x) =—R(a,| x)

® Minimum Error-Rate Case:
g:(x) = P(®, | x)
g:(x) = p(x| w,)P(w;)

gi(x) — lnp(x | a)i)_l_lnP(a)i)
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Discriminant Function

m Relationship between minimum risk and
minimum error rate

T L P(w; | x) error rate (& 7% /iR 5)
L= -~ the probability that action
=1 — Plw; | x
\-~_ ( l ‘ ..*)" (v ({lt*t*i{h‘ ;,-J;) 1S wrong
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Discriminant Function _I

m Various discriminant function
m |dentical classification results

If /(. )1samonotonically increasing function,
then f(g(. ) )’s are also be discriminant functions.

m Example

) =k-x (k>0) 5f(g,(x)=k-g(x) (<7
f()=lnx Hf(g(x)=Ing(x) (1<i<c)

IN
o
N

School of Computer Science and Technology, Shandong University

Xin-Shun Xu @ SDU



Decision Regions _I

m C discriminant functions result in ¢ decision
regions.

R, =1ix]g:(x)>g,(x) Vj #i}
where ®, "R, =¢ (i#j) and Y, R, =R"
m Decision boundary
Decision regions are

separated by decision
boundaries

Two-category example
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The Normal Distribution _I

Discrete random variable (X) — Assume integer
Probability mass function (pmf): p(x) = P(X = x)

Cumulative distribution function (cdf): F'(x) = P(X < x) = Zp(t)

[=—00

Continuous random variable (X)

Probability density function (pdf): p(x)or f(x) nota probability

Cumulative distribution function (cdf): F'(x) = P(X < x) = I p(t)dt
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Expectations

m a.k.a. expected value, mean or average of a
random variable

B X IS arandom

Elx]=-

variable, the expectation of x

Z xp(x) x 1s discrete

X=—00

o0
I xp(x)dx x1s continuous
\_ ¢ —C0

The k£ moment  E[X*]

The 1 moment u, = E[X]

The k™ central moment  E[(X — u,)"]

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University
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Important Expectations _I

m Mean
Y xp(x)  Xisdiscrete
,uX:E[X]zwzoo
I_ xp(x)dx X 1s continuous
m \Variance

D (x—py)’ p(x)  Xisdiscrete
oy =Var[X|=E[(X — )’ ]=1:i—

J: (x—u,)° p(x)dx X is continuous

Notation; o =Var[x] (o: standard deviation ?)
Fact: o’ =Var[x]= E[x"]- (E[x])’
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Entropy

m The entropy measures the fundamental
uncertainty in the value of points selected
randomly from a distribution.

— Z p(x)log p(x) X is discrete
H[X]=1 x=—

—f p(x)log p(x)dx X 1s continuous

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University
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Univariate Gaussian Distribution I

m Gaussian distribution, a.k.a. Gaussian density,
normal density.

X~N(p,0%)
1 (x-p)’
— 207
p(x) Tono e
E[X]=p
Var[X] =c?
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Univariate Gaussian Distribution I

] G; ) Ol G Gl T Il il Il Bl /
I 02=0.2, | |’
NC

0-.2: 1_[]! T —
0%=5.0, —

02=0.5, —| | S8

o o o

I
N

0.8

=T~ = =~
[ I |
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Random Vectors _I

m A d-dimensional random vector is:

X=(x,x,K,x,) X:Q—R“

X ~ p(X) = p(x,,x,,K ,x,) (joint pdf)
m Expected vector
(E[x]) Elx]=[ xpx)dy, (1<i<d)

Elx _r
E[X] = [ 2] Marginal pdf on the J

M ith component.

.

Elx ) w=EX]=(u, 1, K , 1)
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Random Vectors _I

m Covariance matrix /012 o, A Uu\
2
o o, AN o
Z:E X_ X— T — 21 2 2d
(X-mX-pl=| 0
T Oupn A O-c? Y,

O0,=0;= E[(x, _:Ui)(xj _,Uj)]

- -[oo (x; _/ui)(xj —H,; )p(xi’xf)dxidxj

Properties: Marginal pdf on a pair of
Symmetric, Positive semidefinite random variables (x;, x;)
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Multivariate Gaussian Distribution I

m X Is a d-dimensional random vector

X ~ N(u,%)

= expl- Loy B
p _(272_)d/2|2|1/2 p_ ) H n
ElX]|=u

E[(X - ) (X —p)' ]=X
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Properties of N(u,2) _I

m X is a d-dimensional N D)
random vector, and -

X ~N(u,2)
| e
m [f Y=ATX, where A is 3
a d x k matrix, then A

]

mm) Y~-NA'p, A’ZA)
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On Covariance Matrix I

m As mentioned before, 2. is symmetric and
positive semidefinite.

Z — q)A(I)T: (I)AI/ZAI/Z(I)T

@: orthonormal matrix, whose columns are eigenvectors of 2.

A: diagonal matrix (eigenvalues).

m [hus,
Z _ ((I)A1/2)((I)Al/2)T

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University



Mahalanobis Distance

m Mahalanobis distance

rf=(x-p) X7 (x—p)

X ~N(u,2)
(1894-1972)
()= exp L (x-w) E(x-p)
P (272_)d/2 |2|1/2 p_ 2 u "l |
H/_/ _ ~ / \ - 4
depends on constant r?

the value of r?

Xin-Shun Xu @ SDU
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Discriminant Functions for
Gaussian Density I

® Minimume-error-rate classification

g:(x)=P(w, |x) (Isi<c)

2,(x)=In P(@, | X)

H
Constant, could be
1 ignored
p(x| @)= Q) |, | eXp X &~ (X

1

gi<x>=—%(x—uifz;l(x—u»—%fhzn—gm|zl- +1n P(@)
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Discriminant Functions for
Gaussian Density I

m [hree cases
Case1 X = o’1

o Classes are centered at different mean, and their
feature components are pairwisely independent
have the same variance.

Case2 X =X

o Classes are centered at different mean, but have
the same variation.

Case3 X, # X,
O Arbitrary

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University




Case 1: £ =01 _I

irreée\vant
r ™
1 T -1 d 1
gi(X)Z—E(X—Hi) z, (X—H,-)—Elnbz—alnlz,- | +1n P(w,)
1 ) L 1
g (X)=———|x—n, ||” +In P(w;) i =—1
20 o
1 T T T
= — X X2 x+u. m.)+In Plow.
202 (\ ) ul uz uz) ( z)
irrelevant

1 1
g.(x)= —211,-TX + [— > ul.Tul. +1n P(a)l.)}
O 20
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Case1: X. =0l _I

1 1
gi(X)Z—zlll-TXJ{— 2 lll-Tlll-HnP(a),-)}
o 20

m ltis alinear discriminant function

g;(x) = WiTX T Wy
m where
Weight vector

_ 1
Wi_?ui

Threshold/bias

Wi = =5 1 1, +In P(@)

2672
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Case1: X. =o'l _I

Wi = =5 i 1, + In P(@))

2672

g,(x) = WiTX T Wi @, @,
W, = ?Hi
W, X+ W, =W X+W, @ @
W —whx=w,,—w, g:(x)=g;(x)
L J J !
Boundary btw.
P(w,) o, and o,

"' )x=Lw'n-p'n,)-c’In
(W, —p)x=7(u;p, —p;p;) (o)

> (1) ) P(o)
Iw —n, | P(w;)

(0 —p)x=5(n; —p))(, +p,)-0
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Case1: X. =0l _I

m The decision boundary will be a hyperplane
perpendicular to the line btw. the means at somewhere.

- w; ’ @,
w (x—x,)=0 IX‘
S
w=n, -1, |
2
XOZ%(W"'”J‘)_ Z 7 In Ho) (0, —n;) gi(X):gj(X)
W llm—n F Plo) Boundary btw.
midpoint - —— ~ ; and ©,
W 0 1if P(o,)=P(®))

A
r A\

(m 1), —n,) P,
(0 - =Ll —pT ), + )0 o), (@)

2
||ll,-—ll,-|| P(({)])
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Case1: X. =0l _I

P(a)1) — P(a)z)

Minimum distance classifier (template matching)
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Case1: X. =0l

P(w) > P(w,)

plxjw)
4t

ey wy

iy

_ R,
Plw =7 Plw,)=.3 Plw,)=.9 Pluw,)=.1
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Case1: X. =0l

P(w,) > P(w,)
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Case 2: X =X _I

irrelevant
R
1 “d P
gi(x) = —E(X—Hi)TEi_l(X—Hi)—51112”—5111 | Zi |+1nP(a)i)

gi(X)=—%(X—u,-)TZ‘l(x—u,-)+lnP(w,-)

— /

o
Mahalanobis  Irrelevant if
Distance  P(o;)= P(®;) Vi, |

|
=75 (I -2 X X 2 ) + In P(@)
H_/

Irrelevant

W, :Z_lﬂi
g.(x) = WiTX"' Wio
1 oo —1
Wio Z—EHZ-Z I, +lnP(a)i)
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Case 2: X =X _I

W, ZZ_IHZ-
g.(x)= WiTX T Wi
1 . T -1
Wio :_Euiz I, +lnP(0)i)

w (x—x,)=0

~ _ Z—l o | ./,
W= -y 2 (=g, (%

sy MP@)/P@)
Ce TR G S ) R ()

(0 — 1))
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Case3: X, #2X2, _I

irrelevant
1 d 1
g;(x) =—E(X—ui)TEZI(X—u,-)—51n27f—§1n |2, |+1n P(w,)

¢.(x) :—%<x—ui>T2;1<x—u,->—§1n Z, | +1n P(w,)

g (X)=x WX+W X+Ww,
M Decision surfaces are
Without this term hyperquadrics, e.g.,

In Case 1 and 2 »Hyperplanes

1 »Hyperspheres
W, = __}:,l_‘l >Hyperellipsoids

2 >hyperhyperboloids
w, =X p,

Wo=—1ip X w1t n| X [+InP(w,)
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Case 3: X # X,

yi

p(x| w;’)
i

(.4 i

Non-simply connected decision
regions can arise in one dimension
for Gaussians having unequal

0.3 |

variance.

-2.5 2.5

7.3

1
Ly
L
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Case 3: X # X

i o
sl Lo
SRS

o
<5
Toh
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Summary _I

m Bayesian Decision Theory
Basic concepts
Bayes theorem
Bayes decision rule

m Feasibility of Bayes Decision Rule
Prior probability + likelihood

Solution |: counting relative frequencies
Solution Il: conduct density estimation
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Summary _I

m Bayes decision rule: The general scenario
Allowing more than one feature
Allowing more than two states of nature
Allowing actions than merely deciding state of nature
Loss function

Expected loss (conditional risk)
General Bayes decision rule
Minimume-error-rate classification
Discriminant functions

Gaussian density

Discriminant functions for Gaussian pdf.
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k-means

Number of fl
/ cluster K

2

Centroid

Y

Distance objects to
centroids

Y

Grouping bascd on
minimum distance
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Thank You !

Any Question?
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