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Bayesian Decision Theory
 Bayesian decision theory is a statistical 

approach to data mining/pattern recognition

 Mathematical foundation for decision making

 Using probabilistic approach to help making 
decision so as to minimize the risk (cost).
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Bayesian Decision Theory
 Basic Assumptions 

 The decision problem is posed (formalized) in 
probabilistic terms 

 All the relevant probability values are known 

 Key Principle
 Bayes Theorem
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Preliminaries and Notations

:)( iP 
:x

:)|( ip x

:)|( xiP 

a state of nature

prior probability 

feature vector 

class-conditional
density / likelihood
posterior probability 

:)(xp evidence probability 
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Decision Before Observation
 The Problem

 To make a decision where 
Prior probability is known
No observation is allowed

 Naïve Decision Rule

 This is the best we can do without observation
 Fixed prior probabilities -> Same decisions all 

time

2211  otherwise ),()( if   Decide  PP 
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Bayes Theorem
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Thomas Bayes
(1702-1761)
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Decision After Observation
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Decision After Observation
)(

)()|()|(
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 

Known
Prior probability
Class-conditional 
pdf
Observation

Bayes 
Formula

Unknown
Posterior 
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:)|( xiP 
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Special  Cases

 Case I: Equal prior probability
 P(1)=P(2)=   =P(c)=1/c
 Depends on the likelihood p(x|j) 

 Case II: Equal likelihood
 p(x|1)=p(x|2) =   = p(x|c)
 Degenerate to naïve decision rule

 Normally, prior probability and likelihood function 
together in Bayesian decision process







 


evidence

priorlikelihoodposterior   
)(

)()|()|(
x

xx
p

PpP ii
i


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An example

P(1)=2/3
P(2)=1/3

class-conditional pdf for lightness

What will the 
posterior 
probability for 
either type of fish 
look like?

1: sea bass
2: salmon

Decide 1 if  p(x|1)P(1) > p(x|2)P(2); otherwise decide 2
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An example

R1R1
R2

R2

h-axis: lightness of fish scales
v-axis: posterior probability for 
each type of fish
Black curve: sea bass
Red curve: salmon
For each value of x, the higher 
curve yields the output of 
Bayesian decision
For each value of x, the 
posteriors of either curve sum to 
1.0

posterior probability for either type of fish
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Another Example
 Problem statement

 A new medical test is used to detect whether a patient has a 
certain cancer or not, whose test result is either + (positive) or –
(negative)

 For patient with this cancer, the probability of returning positive 
test result is 0.98

 For patient without this cancer, the probability of returning 
negative test result is 0.97

 The probability for any person to have this cancer is 0.008

 Question
 If positive test result is returned, does she/he have cancer?
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Another Example (Cont.)
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Feasibility of Bayes Formula

 To compute posterior probability, we need to 
know prior probability and likelihood







 


evidence

priorlikelihoodposterior   
)(

)()|()|(
x

xx
p

PpP ii
i



How do we 
know these 
probabilities

?

A simple solution: Counting
Relative frequencies

An advanced solution: Conduct
Density estimation
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A Further Example
 Problem

 Based on the height of a car in some campus, decide 
whether it costs more than $50,000 or not

Decide 1 if  P(1|x)  >  P(2|x); 
otherwise decide 2

1 : price  > $ 50,000
2 : price <=$ 50,000
x  : height of a car

Quantities to know:
P(1)    P(2)   P(x|1)   P(x|2) 
How to get them?
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A Further Example (Cont.)
 Collecting samples

 Suppose we have randomly picked 1209 cars in the 
campus, got prices from their owners, and measured 
their heights 

 Compute P(1)  and  P(2) 

# cars in 1 : 221

# cars in 2 : 988

183.0
1209
221)( 1 P

817.0
1209
988)( 2 P
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A Further Example (Cont.)
 Compute P(x|1)   P(x|2) 

 Discretize the height spectrum (say [0.5m, 2.5m]) into 20 
intervals each with length 0.1m, and then count the number of 
cars falling into each interval for either class

 Suppose x = 1.05 , which means 
that x falls into interval
Ix = [1.0m, 1.1m]

For 1, # cars in Ix is 46,

For 2, # cars in Ix is 59,

2081.0
221
46)|05.1( 1  xP

0597.0
988
59)|05.1( 2  xP
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A Further Example (Cont.)
 Question

 For a car with height 1.05m, is its price greater than 
$50,000?

183.0
1209
221)( 1 P

817.0
1209
988)( 2 P

2081.0
221
46)|05.1( 1  xP

0597.0
988
59)|05.1( 2  xP

2081.0183.0
0597.0817.0

)|05.1()(
)|05.1()(

)05.1(
)|05.1()(/

)05.1(
)|05.1()(

)05.1|(
)05.1|(

11

22

1122

1

2



























xPP
xPP

xP
xPP

xP
xPP

xP
xP

P(1|x)  <  P(2|x), 
price<=$50,000
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Is Bayes Decision Rule Optimal
 Consider two categories

 When we observe x, the probability of error is:
Decide 1 if  P(1|x)  >  P(2|x); otherwise decide 2






21

12

 decide  weif)|(
 decide  weif)|(

)|(



x
x

x
P
P

errorP

Thus, under Bayes decision rule, we have

)]|(),|(min[)|( 21 xx  PPxerrorP 

For every x, we ensure that P(error|x) is as small as possible
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Is Bayes Decision Rule Optmal
 Consider two categories

 When we observe x, the probability of error is:
Decide 1 if  P(1|x)  >  P(2|x); otherwise decide 2






21

12

 decide  weif)|(
 decide  weif)|(

)|(



x
x

x
P
P

errorP

Thus, under Bayes decision rule, we have

)]|(),|(min[)|( 21 xx  PPxerrorP 

For every x, we ensure that P(error|x) is as small as possible
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Generalized Bayes Decision Rule

 Allowing to use more than one feature

 Allowing more than two states of nature

 Allowing actions other than merely deciding the 
state of nature

:dRxRx  d-dimensional Euclidean Space

a set of c states of nature

a set of a possible actions

Note that ac 
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Generalized Bayes Decision Rule (cont.)

 Introducing a loss function more general than 
the probability of error

function) (loss    : RA

j

i

 is nature of state the     when                     

 action  for taking incurred loss  the:),(



 ijij 

:)|( jiij  For ease of reference, it 
is usually written as:
We want to minimize the expected loss in making decision.

Risk



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 23

Generalized Bayes Decision Rule (cont.)

 Introducing a loss function more general than 
the probability of error

function) (loss    : RA

j

i

 is nature of state the     when                     

 action  for taking incurred loss  the:),(



 ijij 

:)|( jiij  For ease of reference, it 
is usually written as:
We want to minimize the expected loss in making decision.

Risk
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Generalized Bayes Decision Rule (cont.)

 Problem
 Given a particular x, we have to decide which action 

to take
 To do this, we need to know the loss of taking each 

action )1( ai  αi 

:)|( jiij  

True state of 
nature

The action 
being taken   αi   j

However, the true state 
of nature is uncertain

Expected (average) 
loss

We want to minimize the expected loss in making decision.
Risk



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 25

Generalized Bayes Decision Rule (cont.)





c

j
jjii PR

1
)|()|()|( xx  




c

j
jij P

1

)|( x
 Expected loss

The probability of        
being the true state of 
nature 

The incurred loss of 
taking action        in 
case of true state of 
nature being 

  αi

  j

Given x, the expected loss (risk) 
associated with taking action

i.

Given x, the expected loss (risk) 
associated with taking action

i.

  j

The expected loss is also named as “conditional risk”
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Generalized Bayes Decision Rule (cont.)

 Suppose we have:
For a particular x:
P(1|x)  = 0.01
P(2|x)  = 0.99
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Generalized Bayes Decision Rule (cont.)

 0/1 Loss Function





c

j
jjii PR

1

)|()|()|( xx  



c

j
jij P

1

)|( x






otherwise1

 with assiciateddecision correct  a is 0
)|( ji

ji




( | ) ( | )iR P error x x
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Generalized Bayes Decision Rule (cont.)

 Bayes decision rule (general case)

 Overall risk





c

j
jji

A
i

A
PR

ii 1
)|()|(minarg)|(minarg)( xxx 






c

j
jji

A
i

A
PR

ii 1
)|()|(minarg)|(minarg)( xxx 



dxxpxRR )()|)((   x dxxpxRR )()|)((   x

For every x, we ensure that the conditional risk R(a(x)|x) is as small as 
possible; Thus, the overall risk over all possible x must be as small as 
possible.

Decision function

The optimal one to minimize the overall risk
Its resulting overall risk is called the Bayesian risk
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General Case: Two-Category

},{ 21 

},{ 21 

A
ct

io
n

State of Nature

1 2

1 11 12

2 21 22

 
  
  

Loss Function

)|()|()|( 2121111 xxx  PPR 

)|()|()|( 2221212 xxx  PPR 
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General Case: Two-Category

Perform 1 if  R(2|x)  >  R(1|x); otherwise perform 2

)|()|()|( 2121111 xxx  PPR 

)|()|()|( 2221212 xxx  PPR 

)|()|()|()|( 212111222121 xxxx  PPPP 

)|()()|()( 2221211121 xx  PP 
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General Case: Two-Category

Perform 1 if  R(2|x)  >  R(1|x); otherwise perform 2

)|()|()|()|( 212111222121 xxxx  PPPP 

)|()()|()( 2221211121 xx  PP 

positive positive

Posterior probabilities are scaled before comparison.
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General Case: Two-Category

Perform 1 if  R(2|x)  >  R(1|x); otherwise perform 2

)|()|()|()|( 212111222121 xxxx  PPPP 

)|()()|()( 2221211121 xx  PP 

)()|()()()|()( 222212111121  PpPp xx 

)(
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)(
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)|(
)|(

1

2

1121

2212

2

1










P
P

p
p





x
x
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General Case: Two-Category

)(
)(

)(
)(

)|(
)|(

1
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2212

2

1










P
P

p
p





x
x

Perform 1 if

Likelihood
Ratio Threshold
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Discriminant Function
 Discriminant functions for multicategory

 One function per category

)1(    :)( ciRRxg d
i 

g1(x)

g2(x)

gc(x)

x Action
(e.g., classification)

(x)
Assign x to i if

gi(x) > gj(x) for all j  i.
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Discriminant Function
 Minimum Risk Case:

 Minimum Error-Rate Case:

)|()( xx ii Rg 

)|()( xx ii Pg 

)()|()( iii Ppg xx 

)(ln)|(ln)( iii Ppg   xx
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Discriminant Function
 Relationship between minimum risk and 

minimum error rate 
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Discriminant Function
 Various discriminant function
 Identical classification results

 Example

If  f(．) is a monotonically increasing function, 
then f(gi(．) )’s are also be discriminant functions.

)0(  )(  kxkxf

xxf ln)( 

)1(  )())(( cixgkxgf ii 

)1(  )(ln))(( cixgxgf ii 
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Decision Regions
 c discriminant functions result in c decision 

regions.

 Decision boundary
 Decision regions are 

separated by decision
boundaries

d
iji RRRR

R






c
i

jii

jiwhere

ijgg

1  and  )(    

}  )()(|{



xxx

Two-category example
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The Normal Distribution

Discrete random variable (X) － Assume integer

Continuous random variable (X)

Probability mass function (pmf): )()( xXPxp 

Cumulative distribution function (cdf): 



x

t
tpxXPxF )()()(

Probability density function (pdf): )(or  )( xfxp

Cumulative distribution function (cdf):  


x
dttpxXPxF )()()(

not a probability
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Expectations
 a.k.a. expected value, mean or average of a 

random variable
 x is a random variable, the expectation of x






















continuous is )(

discrete is )(
][

xdxxxp

xxxp
xE x

The kth moment ][ kXE

The kth central moment ])[( k
XXE 

The 1st moment ][XEX 
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Important Expectations
 Mean

 Variance






















continuous is )(

discrete is )(
][

Xdxxxp

Xxxp
XE xX

























continuous is )()(

discrete is )()(
])[(][

2

2
22

Xdxxpx

Xxpx
XEXVar

X

x
X

XX






Notation:                     (σ: standard deviation ?)
Fact:

][2 xVar
222 ])[(][][ xExExVar 
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Entropy
 The entropy measures the fundamental 

uncertainty in the value of points selected 
randomly from a distribution.

























continuous is )(log)(

discrete is )(log)(
][

Xdxxpxp

Xxpxp
XH x
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Univariate Gaussian Distribution

 Gaussian distribution, a.k.a. Gaussian density, 
normal density.

X~N(μ,σ2)

2

2

2
)(

2
1)( 









x

exp

E[X] =μ

Var[X] =σ2



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 44

Univariate Gaussian Distribution

 Gaussian distribution, a.k.a. Gaussian density, 
normal density.

X~N(μ,σ2)

2

2

2
)(

2
1)( 









x

exp

E[X] =μ

Var[X] =σ2
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Random Vectors
 A d-dimensional random vector is:

 Expected vector

T
dxxx ),,,( 21 X dR:X

pdf)(joint     ),,,()(~ 21 dxxxpXpX 





















][

][
][

][ 2

1

dxE

xE
xE

E


X

)1(    )(][ didxxpxxE iiii  




Marginal pdf on the 
ith component.

T
dE ),,,(][ 21   Xμ
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Random Vectors
 Covariance matrix

]))([( TE μXμXΣ 
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xxE


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Marginal pdf on a pair of 
random variables (xi, xj)

Properties:
Symmetric, Positive semidefinite
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Multivariate Gaussian Distribution

 X is a d-dimensional random vector





   )()(

2
1exp

||)2(
1)( 1

2/12/ μxΣμx
Σ

x T
dp



),(~ NX

 ]))([( TXXE 

][XE
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Properties of N(μ,Σ)
 X is a d-dimensional 

random vector, and 

 If Y=ATX, where A is 
a d × k matrix, then

),(~ NX

Y~N(ATμ, ATΣA)
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On Covariance Matrix
 As mentioned before,  is symmetric and 

positive semidefinite.

 Thus,

TΦΛΦΣ  TΦΛΦΛ 2/12/1
: orthonormal matrix, whose columns are eigenvectors of . 

: diagonal matrix (eigenvalues). 

T))(( 2/12/1 ΦΛΦΛΣ 
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Mahalanobis Distance
 Mahalanobis distance

)()( 12 μxΣμx  Tr

),(~ NX





   )()(

2
1exp

||)2(
1)( 1

2/12/ μxΣμx
Σ

x T
dp

 



   )()(

2
1exp

||)2(
1)( 1

2/12/ μxΣμx
Σ

x T
dp



constant r2depends on 
the value of r2

P.C. Mahalanobis
(1894-1972)
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Discriminant Functions for 
Gaussian Density

 Minimum-error-rate classification



)1(   )|()( ciPg ii  xx 

  )|(ln)( xx ii Pg 

)(ln )|(ln)( iii PPg   xx





   )()(

2
1exp

||)2(
1)|( 1

2/12/ ii
T

i
i

dip μxΣμx
Σ

x




)(ln||ln
2
12ln

2
)()(

2
1)( 1

iiii
T

ii Pdg    ΣμxΣμxx

Constant, could be 
ignored

Constant, could be 
ignored
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Discriminant Functions for 
Gaussian Density

 Three cases
 Case 1

Classes are centered at different mean, and their 
feature components are pairwisely independent 
have the same variance.

 Case 2
Classes are centered at different mean, but have 

the same variation.
 Case 3

Arbitrary

IΣ 2i

ΣΣ i

ji ΣΣ 
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Case 1: IΣ 2i

)(ln||ln
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
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Case 1: 

 It is a linear discriminant function

 where
 Weight vector

 Threshold/bias





  )(ln

2
11)( 22 ii

T
i

T
ii Pg 


μμxμx

IΣ 2i

0)( i
T
ii wg  xwx

ii μw 2
1




)(ln22
1

0 ii
T
ii Pw 


 μμ
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Case 1: IΣ 2i
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Case 1: 
 The decision boundary will be a hyperplane

perpendicular to the line btw. the means at somewhere. 

IΣ 2i

i j

Boundary btw. 
i and j
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Case 1: IΣ 2i

)()( 21  PP 

Minimum distance classifier (template matching)
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Case 1: IΣ 2i

)()( 21  PP 
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Case 1: IΣ 2i

)()( 21  PP 



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 60

Case 1: IΣ 2i

)()( 21  PP 
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Case 2: ΣΣ i
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Case 2: ΣΣ i
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Case 2: ΣΣ i
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Case 2: ΣΣ i
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Case 3: ji ΣΣ 

)(ln||ln
2
1)()(

2
1)( 1

iiii
T

ii Pg   ΣμxΣμxx

0)( i
T
ii

T
i wg  xwxWxx

Without this term
In Case 1 and 2
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Decision surfaces are 
hyperquadrics, e.g.,
Hyperplanes
Hyperspheres
Hyperellipsoids
hyperhyperboloids
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Case 3: ji ΣΣ 

Non-simply connected decision 
regions can arise in one dimension 
for Gaussians having unequal 
variance.
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Case 3: ji ΣΣ 
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Case 3: ji ΣΣ 
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Case 3: ji ΣΣ 
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Case 3: ji ΣΣ 
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Summary
 Bayesian Decision Theory

 Basic concepts
 Bayes theorem
 Bayes decision rule

 Feasibility of Bayes Decision Rule
 Prior probability + likelihood
 Solution I: counting relative frequencies
 Solution II: conduct density estimation
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Summary
 Bayes decision rule: The general scenario

 Allowing more than one feature
 Allowing more than two states of nature
 Allowing actions than merely deciding state of nature
 Loss function

 Expected loss (conditional risk)
 General Bayes decision rule
 Minimum-error-rate classification
 Discriminant functions
 Gaussian density
 Discriminant functions for Gaussian pdf.
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k-means
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Any Question?


