M L
 D M
 Chapter 2
 Bayesian Decision Theory

Bayesian Decision Theory

- Bayesian decision theory is a statistical approach to data mining/pattern recognition
- Mathematical foundation for decision making
- Using probabilistic approach to help making decision so as to minimize the risk (cost).

Bayesian Decision Theory

- Basic Assumptions
- The decision problem is posed (formalized) in probabilistic terms
- All the relevant probability values are known
- Key Principle
- Bayes Theorem

Preliminaries and Notations

$\omega_{i} \in\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{c}\right\}: \quad$ a state of nature
$P\left(\omega_{i}\right)$: prior probability
\mathbf{x} : feature vector
$p(\mathbf{x})$: evidence probability
$p\left(\mathbf{x} \mid \omega_{i}\right)$: class-conditional density / likelihood
$P\left(\omega_{i} \mid \mathbf{x}\right)$: posterior probability

Decision Before Observation

■ The Problem

- To make a decision where

םPrior probability is known
\square No observation is allowed
■ Naïve Decision Rule
Decide ω_{1} if $P\left(\omega_{1}\right)>P\left(\omega_{2}\right)$, otherwise ω_{2}

- This is the best we can do without observation

■ Fixed prior probabilities -> Same decisions all time

Bayes Theorem

$$
\begin{aligned}
& P\left(\omega_{i} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)}{p(\mathbf{x})} \\
& p(\mathbf{x})=\sum_{j=1}^{c} p\left(\mathbf{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)
\end{aligned}
$$

Thomas Bayes (1702-1761)

Decision After Observation

$$
\begin{array}{r}
P\left(\omega_{i} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)}{p(\mathbf{x})^{\circ \circ 0}} \\
\mathcal{D}(\mathbf{x})=\underset{\omega_{i} \text { unimp }}{\arg \max } P\left(\omega_{i} \mid \mathbf{x}\right)
\end{array}
$$

Decision After Observation

$$
P\left(\omega_{i} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)}{p(\mathbf{x})}
$$

Special Cases

$$
P\left(\omega_{i} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)}{p(\mathbf{x})}\left(\text { posterior }=\frac{\text { likelihood } \times \text { prior }}{\text { evidence }}\right)
$$

- Case I: Equal prior probability

■ $P\left(\omega_{1}\right)=P\left(\omega_{2}\right)=\cdots=P\left(\omega_{c}\right)=1 / \mathrm{c}$

- Depends on the likelihood $p\left(\mathbf{x} \mid \omega_{j}\right)$

■ Case II: Equal likelihood

- $p\left(\mathbf{x} \mid \omega_{1}\right)=p\left(\mathbf{x} \mid \omega_{2}\right)=\ldots=p\left(\mathbf{x} \mid \omega_{c}\right)$
- Degenerate to naïve decision rule
- Normally, prior probability and likelihood function together in Bayesian decision process

An example

$P\left(\omega_{1}\right)=2 / 3$
$P\left(\omega_{2}\right)=1 / 3$

What will the posterior probability for either type of fish look like?
class-conditional pdf for lightness
Decide ω_{1} if $p\left(\mathbf{x} \mid \omega_{1}\right) P\left(\omega_{1}\right)>p\left(\mathbf{x} \mid \omega_{2}\right) P\left(\omega_{2}\right)$; otherwise decide ω_{2}

An example

posterior probability for either type of fish
h-axis: lightness of fish scales v-axis: posterior probability for each type of fish Black curve: sea bass Red curve: salmon
$>$ For each value of x, the higher curve yields the output of Bayesian decision $>$ For each value of x, the
posteriors of either curve sum to 1.0

Another Example

- Problem statement
- A new medical test is used to detect whether a patient has a certain cancer or not, whose test result is either + (positive) or (negative)
- For patient with this cancer, the probability of returning positive test result is 0.98
- For patient without this cancer, the probability of returning negative test result is 0.97
- The probability for any person to have this cancer is 0.008
- Question
- If positive test result is returned, does she/he have cancer?

Another Example (Cont.)

$$
\begin{aligned}
& \omega_{1}: \text { cancer } \quad \omega_{2}: \text { no cancer } \\
& P\left(\omega_{1}\right)=0.008 \quad P\left(\omega_{2}\right)=1-P\left(\omega_{1}\right)=0.992 \\
& P\left(+\mid \omega_{1}\right)=0.98 \quad P\left(-\mid \omega_{1}\right)=1-P\left(+\mid \omega_{1}\right)=0.02 \\
& P\left(-\mid \omega_{2}\right)=0.97 \quad P\left(+\mid \omega_{2}\right)=1-P\left(-\mid \omega_{2}\right)=0.03 \\
& P\left(\omega_{1} \mid+\right)=\frac{P\left(\omega_{1}\right) P\left(+\mid \omega_{1}\right)}{P(+)}=\frac{P\left(\omega_{1}\right) P\left(+\mid \omega_{1}\right)}{P\left(\omega_{1}\right) P\left(+\mid \omega_{1}\right)+P\left(\omega_{2}\right) P\left(+\mid \omega_{2}\right)} \\
& =\frac{0.008 \times 0.98}{0.008 \times 0.98+0.992 \times 0.03}=0.2085 \\
& P\left(\omega_{2} \mid+\right)=1-P\left(\omega_{1} \mid+\right)=0.7915 \\
& P\left(\omega_{2} \mid+\right)>P\left(\omega_{1} \mid+\right) \\
& \text { No cancer! }
\end{aligned}
$$

Feasibility of Bayes Formula

$$
P\left(\omega_{i} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)}{p(\mathbf{x})}\left(\text { posterior }=\frac{\text { likelihood } \times \text { prior }}{\text { evidence }}\right)
$$

- To compute posterior probability, we need to know prior probability and likelihood

> How do we know these probabilities $?$
$>$ A simple solution: Counting Relative frequencies
>An advanced solution: Conduct Density estimation

A Further Example

■ Problem

- Based on the height of a car in some campus, decide whether it costs more than $\$ 50,000$ or not
ω_{1} : price $>\$ 50,000$
$\omega_{2}:$ price $<=\$ 50,000$
x : height of a car

Decide ω_{1} if $P\left(\omega_{1} \mid \mathbf{x}\right)>P\left(\omega_{2} \mid \mathbf{x}\right)$; otherwise decide ω_{2}

Quantities to know:
$P\left(\omega_{1}\right) \quad P\left(\omega_{2}\right) \quad P\left(\mathrm{x} \mid \omega_{1}\right) \quad P\left(\mathrm{x} \mid \omega_{2}\right)$
How to get them?

Counting relative frequencies via collected samples

A Further Example (Cont.)

- Collecting samples
- Suppose we have randomly picked 1209 cars in the campus, got prices from their owners, and measured their heights
- Compute $P\left(\omega_{1}\right)$ and $P\left(\omega_{2}\right)$

$$
\begin{aligned}
& \# \text { cars in } \omega_{1}: 221 \\
& \# \text { cars in } \omega_{2}: 988
\end{aligned}
$$

$$
\begin{aligned}
& P\left(\omega_{1}\right)=\frac{221}{1209}=0.183 \\
& P\left(\omega_{2}\right)=\frac{988}{1209}=0.817
\end{aligned}
$$

A Further Example (Cont.)

- Compute $P\left(\mathrm{x} \mid \omega_{1}\right) \quad P\left(\mathrm{x} \mid \omega_{2}\right)$
- Discretize the height spectrum (say [0.5m, 2.5m]) into 20 intervals each with length 0.1 m , and then count the number of cars falling into each interval for either class
- Suppose $x=1.05$, which means that x falls into interval
$\mathrm{I}_{\mathrm{x}}=[1.0 \mathrm{~m}, 1.1 \mathrm{~m}]$

For $\omega_{1}, \#$ cars in I_{x} is 46 ,
For $\omega_{2}, \#$ cars in I_{x} is 59,

$$
\begin{aligned}
& P\left(x=1.05 \mid \omega_{1}\right)=\frac{46}{221}=0.2081 \\
& P\left(x=1.05 \mid \omega_{2}\right)=\frac{59}{988}=0.0597
\end{aligned}
$$

A Further Example (Cont.)

- Question
- For a car with height 1.05 m , is its price greater than \$50,000?

$$
\begin{aligned}
& P\left(\omega_{1}\right)=\frac{221}{1209}=0.183 \\
& P\left(\omega_{2}\right)=\frac{988}{1209}=0.817 \\
& P\left(x=1.05 \mid \omega_{2}\right)=\frac{59}{988}=0.0597 \\
& \frac{P\left(x=1.05 \mid \omega_{1}\right)=\frac{46}{221}=0.2081}{P\left(\omega_{2} \mid x=1.05\right)}=\frac{P\left(\omega_{2}\right) P\left(x=1.05 \mid \omega_{2}\right)}{P(x=1.05)} / \frac{P\left(\omega_{1}\right) P\left(x=1.05 \mid \omega_{1}\right)}{P(x=1.05)} \\
& =\frac{P\left(\omega_{2}\right) P\left(x=1.05 \mid \omega_{2}\right)}{P\left(\omega_{1}\right) P\left(x=1.05 \mid \omega_{1}\right)}=\frac{0.817 \times 0.0597}{0.183 \times 0.2081} \\
& P\left(\omega_{1} \mid \mathbf{x}\right)<P\left(\omega_{2} \mid \mathbf{x}\right), \\
& \text { price }<=\$ 50,000
\end{aligned}
$$

Is Bayes Decision Rule Optimal

- Consider two categories

Decide ω_{1} if $P\left(\omega_{1} \mid \mathbf{x}\right)>P\left(\omega_{2} \mid \mathbf{x}\right)$; otherwise decide ω_{2}

- When we observe x , the probability of error is:

$$
P(\text { error } \mid \mathbf{x})= \begin{cases}P\left(\omega_{2} \mid \mathbf{x}\right) & \text { if we decide } \omega_{1} \\ P\left(\omega_{1} \mid \mathbf{x}\right) & \text { if we decide } \omega_{2}\end{cases}
$$

Thus, under Bayes decision rule, we have

$$
P(\text { error } \mid x)=\min \left[P\left(\omega_{1} \mid \mathbf{x}\right), P\left(\omega_{2} \mid \mathbf{x}\right)\right]
$$

For every x , we ensure that $\mathrm{P}($ error| x) is as small as possible

Is Bayes Decision

- Consider two categories

Decide ω_{1} if $P\left(\omega_{1} \mid \mathbf{x}\right)>P\left(\omega_{2} \mid \mathbf{x}\right.$

- When we observe x , the

$$
P(\operatorname{error} \mid \mathbf{x})= \begin{cases}P\left(\omega_{2} \mid \mathbf{x}\right) & \text { if we decide } \omega_{1} \\ P\left(\omega_{1} \mid \mathbf{x}\right) & \text { if we decide } \omega_{2}\end{cases}
$$

Thus, under Bayes decision rule, we have

$$
P(\text { error } \mid x)=\min \left[P\left(\omega_{1} \mid \mathbf{x}\right), P\left(\omega_{2} \mid \mathbf{x}\right)\right]
$$

For every x , we ensure that $\mathrm{P}($ error| x) is as small as possible

Generalized Bayes Decision Rule

- Allowing to use more than one feature

$$
x \in R \Rightarrow x \in R^{d}: \quad \text { d-dimensional Euclidean Space }
$$

- Allowing more than two states of nature

$$
\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{c}\right\}: \text { a set of } c \text { states of nature }
$$

- Allowing actions other than merely deciding the state of nature

$$
A=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{a}\right\}: \quad \text { a set of } a \text { possible actions }
$$

Note that $c \neq a$

Generalized Bayes Decision Rule (cont.)

- Introducing a loss function more general than the probability of error

$$
\lambda: \Omega \times A \rightarrow R \text { (loss function) }
$$

$\lambda_{i j}=\lambda\left(\omega_{j}, \alpha_{i}\right):$ the loss incurred for taking action α_{i} when the state of nature is ω_{j}
For ease of reference, it is usually written as:

$$
\lambda_{i j}=\lambda\left(\alpha_{i} \mid \omega_{j}\right):
$$

We want to minimize the expected loss in making decision.

Generalized Bayes Decision Rule (cont.)

- Introdı

A simple loss function the prı

λ| $\omega_{1}=$ "cancer" | $\mathbf{5}$ | $\mathbf{5 0}$ | $\mathbf{1 0 , 0 0 0}$ |
| :--- | :---: | :---: | :---: |
| $\omega_{2}=$ "no cancer" | $\mathbf{6 0}$ | $\mathbf{3}$ | 0 |

$\lambda_{i j}=\lambda\left(\omega_{j}, \alpha_{i}\right):$ the loss incurred for taking action α_{i} when the state of nature is ω_{j}
For ease of reference, it is usually written as:

$$
\lambda_{i j}=\lambda\left(\alpha_{i} \mid \omega_{j}\right):
$$

We want to minimize the expected loss in making decision.

\section*{
 - Problem
 | Action | $\alpha_{1}=$
 "Recipe A" | $\alpha_{2}=$
 "Recipe B" | $\alpha_{3}=$
 "No Recipe" |
| :--- | :---: | :---: | :---: |
| $\omega_{1}=$ "cancer" | $\mathbf{5}$ | $\mathbf{5 0}$ | $\mathbf{1 0 , 0 0 0}$ |
| $\omega_{2}=$ "no cancer" | $\mathbf{6 0}$ | $\mathbf{3}$ | $\mathbf{0}$ |}

- Given a particular x, we have to decide which action to take
- To do this, we need to know the loss of taking each action $\alpha_{i}(1 \leq i \leq a)$

$$
\lambda_{i j}=\lambda\left(\alpha_{i} \mid \omega_{j}\right):
$$

The action being taken α_{i}

True state of nature ω_{j}

```
However, the true state
    of nature is uncertain
    Expected (average)
                        loss
> of nature is uncertain
Expected (average) loss
```

We want to minimize the expected loss in making decision.

Generalized Bayes Decision Rule (cont.)
 Given x, the expected loss (risk)

- Expected loss associated with taking action

$$
R\left(\alpha_{i} \mid \mathbf{x}\right)=\sum_{j=1}^{c} \lambda\left(\alpha_{i} \mid \omega_{j}\right) P\left(\omega_{j} \mid \mathbf{x}\right)=\sum_{j=1}^{c} \lambda_{i j} P\left(\omega_{j} \mid \mathbf{x}\right)
$$

The incurred loss of taking action α_{i} in case of true state of nature being ω_{j}

The probability of ω_{j} being the true state of nature

The expected loss is also named as "conditional risk"

Generalized Bayes Decision Rule (cont.)

- Suppose we have:

Action	$\alpha_{1}=$ "Recipe A"	$\alpha_{2}=$ "Recipe B"	$\alpha_{3}=$ "No Recipe"
$\omega_{1}=$ "cancer"	$\mathbf{5}$	$\mathbf{5 0}$	$\mathbf{1 0 , 0 0 0}$
$\omega_{2}=$ "no cancer"	$\mathbf{6 0}$	$\mathbf{3}$	$\mathbf{0}$

> For a particular x :
> $P\left(\omega_{1} \mid \mathbf{x}\right)=0.01$
> $P\left(\omega_{2} \mid \mathbf{x}\right)=0.99$

$$
\begin{aligned}
R\left(\alpha_{1} \mid \mathbf{x}\right) & =\sum_{j=1}^{2} \lambda\left(\alpha_{1} \mid \omega_{j}\right) \cdot P\left(\omega_{j} \mid \mathbf{x}\right) \\
& =\lambda\left(\alpha_{1} \mid \omega_{1}\right) \cdot P\left(\omega_{1} \mid \mathbf{x}\right)+\lambda\left(\alpha_{1} \mid \omega_{2}\right) \cdot P\left(\omega_{2} \mid \mathbf{x}\right) \\
& =5 \times 0.01+60 \times 0.99=59.45
\end{aligned}
$$

Similarly, we can get: $R\left(\alpha_{2} \mid \mathbf{x}\right)=3.47 \quad R\left(\alpha_{3} \mid \mathbf{x}\right)=100$

Generalized Bayes Decision Rule (cont.)

- 0/1 Loss Function

$$
R\left(\alpha_{i} \mid \mathbf{x}\right)=\sum_{j=1}^{c} \lambda\left(\alpha_{i} \mid \omega_{j}\right) P\left(\omega_{j} \mid \mathbf{x}\right)=\sum_{j=1}^{c} \lambda_{i j} P\left(\omega_{j} \mid \mathbf{x}\right)
$$

$\lambda\left(\alpha_{i} \mid \omega_{j}\right)= \begin{cases}0 & \alpha_{i} \text { is a correct decision assiciated with } \omega_{j} \\ 1 & \text { otherwise }\end{cases}$

$$
R\left(\alpha_{i} \mid \mathbf{x}\right)=P(\operatorname{error} \mid \mathbf{x})
$$

Generalized Bayes Decision Rule (cont.)

- Bayes decision rule (general case)

$$
\alpha(\mathbf{x})=\underset{\alpha_{i} \in A}{\arg \min } R\left(\alpha_{i} \mid \mathbf{x}\right)=\underset{\alpha_{i} \in A}{\arg \min } \sum_{j=1}^{c} \lambda\left(\alpha_{i} \mid \omega_{j}\right) P\left(\omega_{j} \mid \mathbf{x}\right)
$$

- Overall risk

$$
R=\int R(\alpha(\mathbf{x}) \mid x) \cdot p(x) d x
$$

Decision function
For every x, we ensure that the conditional risk $R(a(x) \mid x)$ is as small as possible; Thus, the overall risk over all possible x must be as small as possible.

The optimal one to minimize the overall risk
Its resulting overall risk is called the Bayesian risk,

General Case: Two-Category

MMA

$$
\begin{aligned}
& R\left(\alpha_{1} \mid \mathbf{x}\right)=\lambda_{11} P\left(\omega_{1} \mid \mathbf{x}\right)+\lambda_{12} P\left(\omega_{2} \mid \mathbf{x}\right) \\
& R\left(\alpha_{2} \mid \mathbf{x}\right)=\lambda_{21} P\left(\omega_{1} \mid \mathbf{x}\right)+\lambda_{22} P\left(\omega_{2} \mid \mathbf{x}\right)
\end{aligned}
$$

General Case: Two-Category

Perform α_{1} if $\underbrace{R\left(\alpha_{2} \mid \mathbf{x}\right)>R\left(\alpha_{1} \mid \mathbf{x}\right) \text {; otherwise perform } \alpha_{2}, ~}$

$$
\begin{aligned}
& \longrightarrow \lambda_{21} P\left(\omega_{1} \mid \mathbf{x}\right)+\lambda_{22} P\left(\omega_{2} \mid \mathbf{x}\right)>\lambda_{11} P\left(\omega_{1} \mid \mathbf{x}\right)+\lambda_{12} P\left(\omega_{2} \mid \mathbf{x}\right) \\
& \longrightarrow\left(\lambda_{21}-\lambda_{11}\right) P\left(\omega_{1} \mid \mathbf{x}\right)>\left(\lambda_{12}-\lambda_{22}\right) P\left(\omega_{2} \mid \mathbf{x}\right) \\
& R\left(\alpha_{1} \mid \mathbf{x}\right)=\lambda_{11} P\left(\omega_{1} \mid \mathbf{x}\right)+\lambda_{12} P\left(\omega_{2} \mid \mathbf{x}\right) \\
& R\left(\alpha_{2} \mid \mathbf{x}\right)=\lambda_{21} P\left(\omega_{1} \mid \mathbf{x}\right)+\lambda_{22} P\left(\omega_{2} \mid \mathbf{x}\right)
\end{aligned}
$$

General Case: Two-Category

Perform α_{1} if $\underbrace{R\left(\alpha_{2} \mid \mathbf{x}\right)>R\left(\alpha_{1} \mid \mathbf{x}\right) \text {; otherwise perform } \alpha_{2}, ~}$
$\longmapsto \lambda_{21} P\left(\omega_{1} \mid \mathbf{x}\right)+\lambda_{22} P\left(\omega_{2} \mid \mathbf{x}\right)>\lambda_{11} P\left(\omega_{1} \mid \mathbf{x}\right)+\lambda_{12} P\left(\omega_{2} \mid \mathbf{x}\right)$

Posterior probabilities are scaled before comparison.

General Case: Two-Category

Perform α_{1} if $R\left(\alpha_{2} \mid \mathbf{x}\right)>R\left(\alpha_{1} \mid \mathbf{x}\right)$; otherwise perform α_{2}
$\longrightarrow \lambda_{21} P\left(\omega_{1} \mid \mathbf{x}\right)+\lambda_{22} P\left(\omega_{2} \mid \mathbf{x}\right)>\lambda_{11} P\left(\omega_{1} \mid \mathbf{x}\right)+\lambda_{12} P\left(\omega_{2} \mid \mathbf{x}\right)$
$\longmapsto\left(\lambda_{21}-\lambda_{11}\right) P\left(\omega_{1} \mid \mathbf{x}\right)>\left(\lambda_{12}-\lambda_{22}\right) P\left(\omega_{2} \mid \mathbf{x}\right)$
$\Longleftrightarrow\left(\lambda_{21}-\lambda_{11}\right) p\left(\mathbf{x} \mid \omega_{1}\right) P\left(\omega_{1}\right)>\left(\lambda_{12}-\lambda_{22}\right) p\left(\mathbf{x} \mid \omega_{2}\right) P\left(\omega_{2}\right)$

$$
\frac{p\left(\mathbf{x} \mid \omega_{1}\right)}{p\left(\mathbf{x} \mid \omega_{2}\right)}>\frac{\left(\lambda_{12}-\lambda_{22}\right)}{\left(\lambda_{21}-\lambda_{11}\right)} \frac{P\left(\omega_{2}\right)}{P\left(\omega_{1}\right)}
$$

General Case: Two-Category

MIMA

Discriminant Function

- Discriminant functions for multicategory

$$
g_{i}(x): R^{d} \rightarrow R \quad(1 \leq i \leq c)
$$

- One function per category

Assign \mathbf{x} to ω_{i} if

$$
g_{i}(\mathbf{x})>g_{j}(\mathbf{x}) \text { for all } j \neq i .
$$

Discriminant Function

- Minimum Risk Case:

$$
g_{i}(\mathbf{x})=-R\left(\alpha_{i} \mid \mathbf{x}\right)
$$

- Minimum Error-Rate Case:

$$
\begin{aligned}
& g_{i}(\mathbf{x})=P\left(\omega_{i} \mid \mathbf{x}\right) \\
& g_{i}(\mathbf{x})=p\left(\mathbf{x} \mid \omega_{i}\right) P\left(\omega_{i}\right) \\
& g_{i}(\mathbf{x})=\ln p\left(\mathbf{x} \mid \omega_{i}\right)+\ln P\left(\omega_{i}\right)
\end{aligned}
$$

Discriminant Function

－Relationship between minimum risk and minimum error rate

$$
\begin{array}{rlr}
R\left(\alpha_{i} \mid \mathbf{x}\right) & =\sum_{j=1}^{c} \lambda\left(\alpha_{i} \mid \omega_{j}\right) \cdot P\left(\omega_{j} \mid \mathbf{x}\right) \\
& =\sum_{j \neq i} \lambda\left(\alpha_{i} \mid \omega_{j}\right) \cdot P\left(\omega_{j} \mid \mathbf{x}\right)+\lambda\left(\alpha_{i} \mid \omega_{i}\right) \cdot P\left(\omega_{i} \mid \mathbf{x}\right) \\
& =\sum_{j \neq i} P\left(\omega_{j} \mid \mathbf{x}\right) & \\
& =1 \begin{array}{c}
\text { error rate (误差率/错误率) } \\
-P\left(\omega_{i} \mid \mathbf{x}\right),
\end{array} & \begin{array}{l}
\text { the probability that action }
\end{array} \\
\text { (decide } \left.\omega_{i}\right) \text { is wrong }
\end{array}
$$

Discriminant Function

- Various discriminant function
- Identical classification results

If $f($.) is a monotonically increasing function, then $f\left(g_{i}().\right)$'s are also be discriminant functions.

- Example

$$
\begin{aligned}
f(x)=k \cdot x(k>0) & \Rightarrow f\left(g_{i}(x)\right)=k \cdot g_{i}(x)(1 \leq i \leq c) \\
f(x)=\ln x & \Rightarrow f\left(g_{i}(x)\right)=\ln g_{i}(x)(1 \leq i \leq c)
\end{aligned}
$$

Decision Regions

- c discriminant functions result in c decision regions.

$$
\begin{aligned}
& \mathcal{R}_{i}=\left\{\mathbf{x} \mid g_{i}(\mathbf{x})>g_{j}(\mathbf{x}) \forall j \neq i\right\} \\
& \text { where } \mathcal{R}_{i} \cap \mathcal{R}_{j}=\phi(i \neq j) \text { and } \mathrm{Y}_{i=1}^{c} \mathcal{R}_{i}=\mathcal{R}^{d}
\end{aligned}
$$

- Decision boundary
- Decision regions are separated by decision boundaries

Two-category example

The Normal Distribution

Discrete random variable (X) - Assume integer
Probability mass function (pmf): $p(x)=P(X=x)$
Cumulative distribution function (cdf): $F(x)=P(X \leq x)=\sum_{t=-\infty}^{x} p(t)$

Continuous random variable (X)

Probability density function (pdf): $p(x)$ or $f(x)$ not a probability
Cumulative distribution function (cdf): $F(x)=P(X \leq x)=\int_{-\infty}^{x} p(t) d t$

Expectations

- a.k.a. expected value, mean or average of a random variable
■ x is a random variable, the expectation of x

$$
E[x]= \begin{cases}\sum_{x=-\infty}^{\infty} x p(x) & x \text { is discrete } \\ \int_{-\infty}^{\infty} x p(x) d x & x \text { is continuous }\end{cases}
$$

The $k^{\text {th }}$ moment $E\left[X^{k}\right]$
The $1^{\text {st }}$ moment $\mu_{X}=E[X]$
The $k^{\text {th }}$ central moment $\quad E\left[\left(X-\mu_{X}\right)^{k}\right]$

Important Expectations

■ Mean

$$
\mu_{X}=E[X]= \begin{cases}\sum_{x=-\infty}^{\infty} x p(x) & X \text { is discrete } \\ \int_{-\infty}^{\infty} x p(x) d x & X \text { is continuous }\end{cases}
$$

- Variance

$$
\sigma_{X}^{2}=\operatorname{Var}[X]=E\left[\left(X-\mu_{X}\right)^{2}\right]= \begin{cases}\sum_{x=-\infty}^{\infty}\left(x-\mu_{X}\right)^{2} p(x) & X \text { is discrete } \\ \int_{-\infty}^{\infty}\left(x-\mu_{X}\right)^{2} p(x) d x & X \text { is continuous }\end{cases}
$$

Notation: $\quad \sigma^{2}=\operatorname{Var}[x]$ (σ : standard deviation ?) Fact: $\quad \sigma^{2}=\operatorname{Var}[x]=E\left[x^{2}\right]-(E[x])^{2}$

Entropy

- The entropy measures the fundamental uncertainty in the value of points selected randomly from a distribution.

$$
H[X]= \begin{cases}-\sum_{x=-\infty}^{\infty} p(x) \log p(x) & X \text { is discrete } \\ -\int_{-\infty}^{\infty} p(x) \log p(x) d x & X \text { is continuous }\end{cases}
$$

Univariate Gaussian Distribution

■ Gaussian distribution, a.k.a. Gaussian density, normal density.

$$
\begin{aligned}
& X \sim N\left(\mu, \sigma^{2}\right) \\
& p(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \\
& E[X]=\mu
\end{aligned}
$$

$\operatorname{Var}[X]=\sigma^{2}$

Univariate Gaussian Distribution

MIMA

$$
\operatorname{Var}[X]=\sigma^{2}
$$

Random Vectors

- A d-dimensional random vector is:

$$
\mathbf{X}=\left(x_{1}, x_{2}, \mathrm{~K}, x_{d}\right)^{T} \quad \mathbf{X}: \Omega \rightarrow R^{d}
$$

$$
X \sim p(X)=p\left(x_{1}, x_{2}, \mathrm{~K}, x_{d}\right) \quad \text { (joint pdf) }
$$

- Expected vector

$$
E[\mathbf{X}]=\left(\begin{array}{c}
E\left[x_{1}\right] \\
E\left[x_{2}\right] \\
\mathrm{M} \\
E\left[x_{d}\right]
\end{array}\right) \begin{gathered}
E\left[x_{i}\right]=\int_{-\infty}^{+\infty} x_{i} \underline{p\left(x_{i}\right) d x_{i}}(1 \leq i \leq d) \\
\begin{array}{l}
\text { Marginal pdf on the } \\
\text { ith component. }
\end{array} \\
\hline \boldsymbol{\mu}=E[\mathbf{X}]=\left(\mu_{1}, \mu_{2}, \mathrm{~K}, \mu_{d}\right)^{T}
\end{gathered}
$$

Random Vectors

- Covariance matrix

$$
\begin{aligned}
& \boldsymbol{\Sigma}=E\left[(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{T}\right]=\left[\begin{array}{cccc}
\sigma_{21} & \sigma_{2}^{2} & \Lambda & \sigma_{2 d} \\
\mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{M} \\
\sigma_{d 1} & \sigma_{d 2} & \Lambda & \sigma_{d}^{2}
\end{array}\right) \\
& \begin{aligned}
\sigma_{i j}= & \sigma_{j i} \\
= & E\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right] \\
& =\int_{-\infty}^{+\infty}\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right) \underline{p\left(x_{i}, x_{j}\right)} d x_{i} d x_{j}
\end{aligned}
\end{aligned}
$$

Properties:
Symmetric, Positive semidefinite

Marginal pdf on a pair of random variables (x_{i}, x_{j})

Multivariate Gaussian Distribution

■ X is a d-dimensional random vector

$$
\begin{aligned}
& X \sim N(\mu, \Sigma) \\
& p(\mathbf{x})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right] \\
& E[X]=\mu \\
& E\left[(X-\mu)(X-\mu)^{T}\right]=\Sigma
\end{aligned}
$$

Properties of $N(\mu, \Sigma)$

$\square X$ is a d-dimensional random vector, and $X \sim N(\mu, \Sigma)$

■ If $\mathrm{Y}=\mathrm{A}^{T} \mathrm{X}$, where \mathbf{A} is a $d \times k$ matrix, then

$$
\mathbf{Y} \sim N\left(\mathbf{A}^{T} \boldsymbol{\mu}, \mathbf{A}^{T} \mathbf{\Sigma} \mathbf{A}\right)
$$

On Covariance Matrix

- As mentioned before, Σ is symmetric and positive semidefinite.

$$
\boldsymbol{\Sigma}=\boldsymbol{\Phi} \boldsymbol{\Lambda} \boldsymbol{\Phi}^{T}=\boldsymbol{\Phi} \mathbf{\Lambda}^{1 / 2} \boldsymbol{\Lambda}^{1 / 2} \boldsymbol{\Phi}^{T}
$$

Φ : orthonormal matrix, whose columns are eigenvectors of \sum. ^: diagonal matrix (eigenvalues).

■ Thus,

$$
\boldsymbol{\Sigma}=\left(\boldsymbol{\Phi} \mathbf{\Lambda}^{1 / 2}\right)\left(\boldsymbol{\Phi} \mathbf{\Lambda}^{1 / 2}\right)^{T}
$$

Mahalanobis Distance

- Mahalanobis distance

$$
\begin{aligned}
& r^{2}=(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \\
& X \sim N(\mu, \Sigma)
\end{aligned}
$$

P.C. Mahalanobis (1894-1972)

the value of r^{2}

Discriminant Functions for Gaussian Density

- Minimum-error-rate classification

$$
\begin{array}{r}
g_{i}(\mathbf{x})=P\left(\omega_{i} \mid \mathbf{x}\right) \quad(1 \leq i \leq c) \\
g_{i}(\mathbf{x})=\frac{\ln P\left(\omega_{i} \mid \mathbf{x}\right)}{}
\end{array}
$$

$$
\begin{gathered}
g_{i}(\mathbf{x})=\ln P(\mathbf{x} \mid \omega)+\ln P(\omega) \\
p\left(\mathbf{x} \mid \omega_{i}\right)=\frac{1}{(2 \pi)^{d / 2}\left|\mathbf{\Sigma}_{i}\right|^{1 / 2}} \exp \left[\frac{\text { Constant, could be }}{\text { ignored }}\right. \\
0
\end{gathered}
$$

$$
g_{i}(\mathbf{x})=-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)^{T} \mathbf{\Sigma}_{i}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)-\frac{d}{2} \ln 2 \pi-\frac{1}{2} \ln \left|\mathbf{\Sigma}_{i}\right|+\ln P\left(\omega_{i}\right)
$$

Discriminant Functions for
 Gaussian Density

- Three cases
\square Case $1 \quad \boldsymbol{\Sigma}_{i}=\sigma^{2} \mathbf{I}$
\square Classes are centered at different mean, and their feature components are pairwisely independent have the same variance.
- Case $2 \boldsymbol{\Sigma}_{i}=\boldsymbol{\Sigma}$

口Classes are centered at different mean, but have the same variation.

- Case $3 \quad \boldsymbol{\Sigma}_{i} \neq \boldsymbol{\Sigma}_{j}$
-Arbitrary

Case 1: $\boldsymbol{\Sigma}_{i}=\sigma^{2} \mathbf{I}$

$$
\begin{aligned}
g_{i}(\mathbf{x}) & =-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)^{T} \mathbf{\Sigma}_{i}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)-\overbrace{\frac{d}{2} \ln 2 \pi-\frac{1}{2} \ln \left|\mathbf{\Sigma}_{i}\right|}^{\text {irrelevant }}+\ln P\left(\omega_{i}\right) \\
g_{i}(\mathbf{x}) & =-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}-\boldsymbol{\mu}_{i}\right\|^{2}+\ln P\left(\omega_{i}\right) \quad \boldsymbol{\Sigma}_{i}^{-1}=\frac{1}{\sigma^{2}} \mathbf{I} \\
& =-\frac{1}{2 \sigma^{2}}(\underbrace{\mathbf{x}^{T} \mathbf{x}}_{\text {irrelevant }}-2 \boldsymbol{\mu}_{i}^{T} \mathbf{x}+\boldsymbol{\mu}_{i}^{T} \boldsymbol{\mu}_{i})+\ln P\left(\omega_{i}\right) \\
g_{i}(\mathbf{x}) & =\frac{1}{\sigma^{2}} \boldsymbol{\mu}_{i}^{T} \mathbf{x}+\left[-\frac{1}{2 \sigma^{2}} \mathbf{\mu}_{i}^{T} \boldsymbol{\mu}_{i}+\ln P\left(\omega_{i}\right)\right]
\end{aligned}
$$

Case 1: $\boldsymbol{\Sigma}_{i}=\sigma^{2} \mathbf{I}$

$$
g_{i}(\mathbf{x})=\frac{1}{\sigma^{2}} \boldsymbol{\mu}_{i}^{T} \mathbf{x}+\left[-\frac{1}{2 \sigma^{2}} \boldsymbol{\mu}_{i}^{T} \boldsymbol{\mu}_{i}+\ln P\left(\omega_{i}\right)\right]
$$

- It is a linear discriminant function

$$
g_{i}(\mathbf{x})=\mathbf{w}_{i}^{T} \mathbf{x}+w_{i 0}
$$

■ where

- Weight vector

$$
\mathbf{w}_{i}=\frac{1}{\sigma^{2}} \boldsymbol{\mu}_{i}
$$

- Threshold/bias

$$
w_{i 0}=-\frac{1}{2 \sigma^{2}} \boldsymbol{\mu}_{i}^{T} \boldsymbol{\mu}_{i}+\ln P\left(\omega_{i}\right)
$$

Case 1: $\boldsymbol{\Sigma}_{i}=\sigma^{2} \mathbf{I}$

$$
g_{i}(\mathbf{x})=\mathbf{w}_{i}^{T} \mathbf{x}+w_{i 0}
$$

$$
w_{i 0}=-\frac{1}{2 \sigma^{2}} \boldsymbol{\mu}_{i}^{T} \boldsymbol{\mu}_{i}+\ln P\left(\omega_{i}\right)
$$

$$
\mathbf{W}_{i}=\frac{1}{\sigma^{2}} \boldsymbol{\mu}_{i}
$$

$$
\mathbf{w}_{i}^{T} \mathbf{x}+w_{i 0}=\mathbf{w}_{j}^{T} \mathbf{x}+w_{j 0}
$$

$$
\left.\begin{array}{cc}
\left(\mathbf{w}_{i}^{T}-\mathbf{w}_{j}^{T}\right) \mathbf{x}=w_{j 0}-w_{i 0} & g_{i}(\mathbf{x})=g_{j}(\mathbf{x}) \\
\text { Boundary btw. } \\
\left(\boldsymbol{\mu}_{i}^{T}-\boldsymbol{\mu}_{j}^{T}\right) \mathbf{x}=\frac{1}{2}\left(\boldsymbol{\mu}_{i}^{T} \boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}^{T} \boldsymbol{\mu}_{j}\right)-\sigma^{2} \ln \frac{P\left(\omega_{i}\right)}{P\left(\omega_{j}\right)} & \omega_{i} \text { and } \omega_{j}
\end{array}\right] \begin{gathered}
\\
\left(\boldsymbol{\mu}_{i}^{T}-\boldsymbol{\mu}_{j}^{T}\right) \mathbf{x}=\frac{1}{2}\left(\boldsymbol{\mu}_{i}^{T}-\boldsymbol{\mu}_{j}^{T}\right)\left(\boldsymbol{\mu}_{i}+\boldsymbol{\mu}_{j}\right)-\sigma^{2} \frac{\left(\boldsymbol{\mu}_{i}^{T}-\boldsymbol{\mu}_{j}^{T}\right)\left(\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right)}{\left\|\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right\|^{2}} \ln \frac{P\left(\omega_{i}\right)}{P\left(\omega_{j}\right)}
\end{gathered}
$$

Case 1: $\boldsymbol{\Sigma}_{i}=\sigma^{2} \mathbf{I}$

- The decision boundary will be a hyperplane perpendicular to the line btw. the means at somewhere.

$$
\begin{aligned}
& \mathbf{w}^{T}\left(\mathbf{x}-\mathbf{x}_{0}\right)=0 \\
& \mathbf{w}=\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}
\end{aligned}
$$

$$
\mathbf{x}_{0}=\underbrace{\frac{1}{2}\left(\boldsymbol{\mu}_{i}+\boldsymbol{\mu}_{j}\right)}_{\text {midpoint }}-\underbrace{\frac{\sigma^{2}}{\left\|\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right\|^{2}} \ln \frac{P\left(\omega_{i}\right)}{P\left(\omega_{j}\right)}\left(\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right)}_{0 \text { if } D\left(\omega_{0}-D(\infty)\right.}
$$

$$
g_{i}(\mathbf{x})=g_{j}(\mathbf{x})
$$

Boundary btw.

$$
\omega_{i} \text { and } \omega_{j}
$$

$$
\overbrace{\left(\boldsymbol{\mu}_{i}^{T}-\boldsymbol{\mu}_{j}^{T}\right) \mathbf{x}=\frac{1}{2}\left(\boldsymbol{\mu}_{i}^{T}-\boldsymbol{\mu}_{j}^{T}\right)\left(\boldsymbol{\mu}_{i}+\boldsymbol{\mu}_{j}\right)-\sigma^{2} \frac{\left(\boldsymbol{\mu}_{i}^{T}-\boldsymbol{\mu}_{j}^{T}\right)\left(\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right)}{\left\|\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right\|^{2}} \ln \frac{P\left(\omega_{i}\right)}{P\left(\omega_{j}\right)}}^{\mathbf{w}^{T}}
$$

Case 1: $\boldsymbol{\Sigma}_{i}=\sigma^{2} \mathbf{I}$

$$
P\left(\omega_{1}\right)=P\left(\omega_{2}\right)
$$

Minimum distance classifier (template matching)

Case 1: $\boldsymbol{\Sigma}_{i}=\sigma^{2} \mathbf{I}$

MIMA

$$
P\left(\omega_{1}\right)>P\left(\omega_{2}\right)
$$

Case 1: $\boldsymbol{\Sigma}_{i}=\sigma^{2} \mathbf{I}$

$P\left(\omega_{1}\right)>P\left(\omega_{2}\right)$

Case 1: $\boldsymbol{\Sigma}_{i}=\sigma^{2} \mathbf{I}$

MIMA

$P\left(\omega_{1}\right)>P\left(\omega_{2}\right)$

Case 2: $\boldsymbol{\Sigma}_{i}=\boldsymbol{\Sigma}$

irrelevant

$$
g_{i}(\mathbf{x})=-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)^{T} \boldsymbol{\Sigma}_{i}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)-\frac{d}{2} \ln 2 \pi-\frac{1}{2} \ln \left|\boldsymbol{\Sigma}_{i}\right|+\ln P\left(\omega_{i}\right)
$$

$$
g_{i}(\mathbf{x})=-\frac{1}{2}(\underbrace{\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)}_{\text {Mahalanobis }}+\underbrace{\ln P\left(\omega_{i}\right)}_{\text {Irrelevant if }}
$$

$$
\text { Distance } \quad P\left(\omega_{i}\right)=P\left(\omega_{j}\right) \forall i, j
$$

$$
=-\frac{1}{2}(\underbrace{\mathbf{x}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x}}-2 \boldsymbol{\mu}_{i}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x}+\boldsymbol{\mu}_{i}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{i})+\ln P\left(\omega_{i}\right)
$$

$$
g_{i}(\mathbf{x})=\mathbf{w}_{i}^{T} \mathbf{x}+w_{i 0}\left\{\begin{array}{l}
\mathbf{w}_{i}=\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{i} \\
w_{i 0}=-\frac{1}{2} \boldsymbol{\mu}_{i}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{i}+\ln P\left(\omega_{i}\right)
\end{array}\right.
$$

Case 2: $\Sigma_{i}=\Sigma$

$$
\begin{aligned}
& g_{i}(\mathbf{x})=\mathbf{w}_{i}^{T} \mathbf{x}+w_{i 0}\left\{\begin{array}{l}
\mathbf{w}_{i}=\mathbf{\Sigma}^{-1} \boldsymbol{\mu}_{i} \\
w_{i 0}=-\frac{1}{2} \boldsymbol{\mu}_{i}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{i}+\ln P\left(\omega_{i}\right)
\end{array}\right. \\
& \left\{\begin{array}{l}
\mathbf{w}=\boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right) \\
\mathbf{x}_{0}=\frac{1}{2}\left(\boldsymbol{\mu}_{i}+\mathbf{x}_{0}\right)=0
\end{array}\right. \\
& g_{i}(\mathbf{x})=g_{j}(\mathbf{x}) \\
& \left(\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j}\right) \\
& \left.\mathbf{\mu}_{i}-\boldsymbol{\mu}_{j}\right)
\end{aligned}
$$

Case 2: $\boldsymbol{\Sigma}_{i}=\boldsymbol{\Sigma}$

Case 2: $\Sigma_{i}=\Sigma$

Case 3: $\boldsymbol{\Sigma}_{i} \neq \boldsymbol{\Sigma}_{j}$

$$
\begin{aligned}
& g_{i}(\mathbf{x})=-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)^{T} \boldsymbol{\Sigma}_{i}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)-\overbrace{\frac{d}{2} \ln 2 \pi-\frac{1}{2} \ln \left|\boldsymbol{\Sigma}_{i}\right|+\ln P\left(\omega_{i}\right)}^{\text {irrelevant }} \underbrace{g_{i}(\mathbf{x})=-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)^{T} \boldsymbol{\Sigma}_{i}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{i}\right)-\frac{1}{2} \ln \left|\boldsymbol{\Sigma}_{i}\right|+\ln P\left(\omega_{i}\right)} \\
& g_{i}(\mathbf{x})=\underbrace{\mathbf{x}^{T} \mathbf{W}_{i} \mathbf{x}+\mathbf{w}_{i}^{T} \mathbf{x}+w_{i 0}}_{\text {Without this term }} \begin{array}{l}
\text { In Case 1 and } 2
\end{array} \\
& \begin{array}{l}
\text { Decision surfaces are } \\
\text { hyperquadrics, e.g., } \\
\text { - Hyperplanes } \\
\text { - Hyperspheres } \\
\text { - Hyperellipsoids } \\
\text { - hyperhyperboloids }
\end{array}
\end{aligned}
$$

Case 3: $\boldsymbol{\Sigma}_{i} \neq \boldsymbol{\Sigma}_{j}$

Summary

- Bayesian Decision Theory
- Basic concepts
- Bayes theorem
- Bayes decision rule
- Feasibility of Bayes Decision Rule
- Prior probability + likelihood
- Solution I: counting relative frequencies
- Solution II: conduct density estimation

Summary

- Bayes decision rule: The general scenario
- Allowing more than one feature
- Allowing more than two states of nature
- Allowing actions than merely deciding state of nature
- Loss function

■ Expected loss (conditional risk)

- General Bayes decision rule
- Minimum-error-rate classification
- Discriminant functions
- Gaussian density
- Discriminant functions for Gaussian pdf.

k-means

MIMA Groun

[Thank You!]

Any Question?

