
MIMA Group

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University

Chapter  2
Bayesian Decision Theory

M L
D M



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 2

Bayesian Decision Theory
 Bayesian decision theory is a statistical 

approach to data mining/pattern recognition

 Mathematical foundation for decision making

 Using probabilistic approach to help making 
decision so as to minimize the risk (cost).
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Bayesian Decision Theory
 Basic Assumptions 

 The decision problem is posed (formalized) in 
probabilistic terms 

 All the relevant probability values are known 

 Key Principle
 Bayes Theorem
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Preliminaries and Notations

:)( iP 
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a state of nature

prior probability 

feature vector 

class-conditional
density / likelihood
posterior probability 

:)(xp evidence probability 
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Decision Before Observation
 The Problem

 To make a decision where 
Prior probability is known
No observation is allowed

 Naïve Decision Rule

 This is the best we can do without observation
 Fixed prior probabilities -> Same decisions all 

time

2211  otherwise ),()( if   Decide  PP 
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Bayes Theorem
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Thomas Bayes
(1702-1761)
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Decision After Observation
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Decision After Observation
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pdf
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Bayes 
Formula
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Posterior 
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Special  Cases

 Case I: Equal prior probability
 P(1)=P(2)=   =P(c)=1/c
 Depends on the likelihood p(x|j) 

 Case II: Equal likelihood
 p(x|1)=p(x|2) =   = p(x|c)
 Degenerate to naïve decision rule

 Normally, prior probability and likelihood function 
together in Bayesian decision process
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An example

P(1)=2/3
P(2)=1/3

class-conditional pdf for lightness

What will the 
posterior 
probability for 
either type of fish 
look like?

1: sea bass
2: salmon

Decide 1 if  p(x|1)P(1) > p(x|2)P(2); otherwise decide 2
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An example

R1R1
R2

R2

h-axis: lightness of fish scales
v-axis: posterior probability for 
each type of fish
Black curve: sea bass
Red curve: salmon
For each value of x, the higher 
curve yields the output of 
Bayesian decision
For each value of x, the 
posteriors of either curve sum to 
1.0

posterior probability for either type of fish
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Another Example
 Problem statement

 A new medical test is used to detect whether a patient has a 
certain cancer or not, whose test result is either + (positive) or –
(negative)

 For patient with this cancer, the probability of returning positive 
test result is 0.98

 For patient without this cancer, the probability of returning 
negative test result is 0.97

 The probability for any person to have this cancer is 0.008

 Question
 If positive test result is returned, does she/he have cancer?
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Another Example (Cont.)
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Feasibility of Bayes Formula

 To compute posterior probability, we need to 
know prior probability and likelihood
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How do we 
know these 
probabilities

?

A simple solution: Counting
Relative frequencies

An advanced solution: Conduct
Density estimation
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A Further Example
 Problem

 Based on the height of a car in some campus, decide 
whether it costs more than $50,000 or not

Decide 1 if  P(1|x)  >  P(2|x); 
otherwise decide 2

1 : price  > $ 50,000
2 : price <=$ 50,000
x  : height of a car

Quantities to know:
P(1)    P(2)   P(x|1)   P(x|2) 
How to get them?
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A Further Example (Cont.)
 Collecting samples

 Suppose we have randomly picked 1209 cars in the 
campus, got prices from their owners, and measured 
their heights 

 Compute P(1)  and  P(2) 

# cars in 1 : 221

# cars in 2 : 988

183.0
1209
221)( 1 P

817.0
1209
988)( 2 P
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A Further Example (Cont.)
 Compute P(x|1)   P(x|2) 

 Discretize the height spectrum (say [0.5m, 2.5m]) into 20 
intervals each with length 0.1m, and then count the number of 
cars falling into each interval for either class

 Suppose x = 1.05 , which means 
that x falls into interval
Ix = [1.0m, 1.1m]

For 1, # cars in Ix is 46,

For 2, # cars in Ix is 59,

2081.0
221
46)|05.1( 1  xP

0597.0
988
59)|05.1( 2  xP
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A Further Example (Cont.)
 Question

 For a car with height 1.05m, is its price greater than 
$50,000?

183.0
1209
221)( 1 P

817.0
1209
988)( 2 P

2081.0
221
46)|05.1( 1  xP

0597.0
988
59)|05.1( 2  xP

2081.0183.0
0597.0817.0

)|05.1()(
)|05.1()(

)05.1(
)|05.1()(/

)05.1(
)|05.1()(

)05.1|(
)05.1|(

11

22

1122

1

2



























xPP
xPP

xP
xPP

xP
xPP

xP
xP

P(1|x)  <  P(2|x), 
price<=$50,000
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Is Bayes Decision Rule Optimal
 Consider two categories

 When we observe x, the probability of error is:
Decide 1 if  P(1|x)  >  P(2|x); otherwise decide 2






21

12

 decide  weif)|(
 decide  weif)|(

)|(



x
x

x
P
P

errorP

Thus, under Bayes decision rule, we have

)]|(),|(min[)|( 21 xx  PPxerrorP 

For every x, we ensure that P(error|x) is as small as possible
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Is Bayes Decision Rule Optmal
 Consider two categories

 When we observe x, the probability of error is:
Decide 1 if  P(1|x)  >  P(2|x); otherwise decide 2
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x

x
P
P

errorP

Thus, under Bayes decision rule, we have

)]|(),|(min[)|( 21 xx  PPxerrorP 

For every x, we ensure that P(error|x) is as small as possible
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Generalized Bayes Decision Rule

 Allowing to use more than one feature

 Allowing more than two states of nature

 Allowing actions other than merely deciding the 
state of nature

:dRxRx  d-dimensional Euclidean Space

a set of c states of nature

a set of a possible actions

Note that ac 
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Generalized Bayes Decision Rule (cont.)

 Introducing a loss function more general than 
the probability of error

function) (loss    : RA

j

i

 is nature of state the     when                     

 action  for taking incurred loss  the:),(



 ijij 

:)|( jiij  For ease of reference, it 
is usually written as:
We want to minimize the expected loss in making decision.

Risk
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Generalized Bayes Decision Rule (cont.)

 Introducing a loss function more general than 
the probability of error

function) (loss    : RA

j

i

 is nature of state the     when                     

 action  for taking incurred loss  the:),(



 ijij 

:)|( jiij  For ease of reference, it 
is usually written as:
We want to minimize the expected loss in making decision.

Risk
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Generalized Bayes Decision Rule (cont.)

 Problem
 Given a particular x, we have to decide which action 

to take
 To do this, we need to know the loss of taking each 

action )1( ai  αi 

:)|( jiij  

True state of 
nature

The action 
being taken   αi   j

However, the true state 
of nature is uncertain

Expected (average) 
loss

We want to minimize the expected loss in making decision.
Risk
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Generalized Bayes Decision Rule (cont.)
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jjii PR
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)|()|()|( xx  




c

j
jij P

1

)|( x
 Expected loss

The probability of        
being the true state of 
nature 

The incurred loss of 
taking action        in 
case of true state of 
nature being 

  αi

  j

Given x, the expected loss (risk) 
associated with taking action

i.

Given x, the expected loss (risk) 
associated with taking action

i.

  j

The expected loss is also named as “conditional risk”
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Generalized Bayes Decision Rule (cont.)

 Suppose we have:
For a particular x:
P(1|x)  = 0.01
P(2|x)  = 0.99
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Generalized Bayes Decision Rule (cont.)

 0/1 Loss Function
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Generalized Bayes Decision Rule (cont.)

 Bayes decision rule (general case)

 Overall risk
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dxxpxRR )()|)((   x dxxpxRR )()|)((   x

For every x, we ensure that the conditional risk R(a(x)|x) is as small as 
possible; Thus, the overall risk over all possible x must be as small as 
possible.

Decision function

The optimal one to minimize the overall risk
Its resulting overall risk is called the Bayesian risk
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General Case: Two-Category

},{ 21 

},{ 21 

A
ct

io
n

State of Nature

1 2

1 11 12

2 21 22

 
  
  

Loss Function

)|()|()|( 2121111 xxx  PPR 

)|()|()|( 2221212 xxx  PPR 
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General Case: Two-Category

Perform 1 if  R(2|x)  >  R(1|x); otherwise perform 2

)|()|()|( 2121111 xxx  PPR 

)|()|()|( 2221212 xxx  PPR 

)|()|()|()|( 212111222121 xxxx  PPPP 

)|()()|()( 2221211121 xx  PP 
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General Case: Two-Category

Perform 1 if  R(2|x)  >  R(1|x); otherwise perform 2

)|()|()|()|( 212111222121 xxxx  PPPP 

)|()()|()( 2221211121 xx  PP 

positive positive

Posterior probabilities are scaled before comparison.
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General Case: Two-Category

Perform 1 if  R(2|x)  >  R(1|x); otherwise perform 2

)|()|()|()|( 212111222121 xxxx  PPPP 

)|()()|()( 2221211121 xx  PP 

)()|()()()|()( 222212111121  PpPp xx 
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General Case: Two-Category
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Discriminant Function
 Discriminant functions for multicategory

 One function per category

)1(    :)( ciRRxg d
i 

g1(x)

g2(x)

gc(x)

x Action
(e.g., classification)

(x)
Assign x to i if

gi(x) > gj(x) for all j  i.
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Discriminant Function
 Minimum Risk Case:

 Minimum Error-Rate Case:

)|()( xx ii Rg 

)|()( xx ii Pg 

)()|()( iii Ppg xx 

)(ln)|(ln)( iii Ppg   xx
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Discriminant Function
 Relationship between minimum risk and 

minimum error rate 
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Discriminant Function
 Various discriminant function
 Identical classification results

 Example

If  f(．) is a monotonically increasing function, 
then f(gi(．) )’s are also be discriminant functions.

)0(  )(  kxkxf

xxf ln)( 

)1(  )())(( cixgkxgf ii 

)1(  )(ln))(( cixgxgf ii 
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Decision Regions
 c discriminant functions result in c decision 

regions.

 Decision boundary
 Decision regions are 

separated by decision
boundaries

d
iji RRRR

R
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Two-category example
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The Normal Distribution

Discrete random variable (X) － Assume integer

Continuous random variable (X)

Probability mass function (pmf): )()( xXPxp 

Cumulative distribution function (cdf): 



x

t
tpxXPxF )()()(

Probability density function (pdf): )(or  )( xfxp

Cumulative distribution function (cdf):  


x
dttpxXPxF )()()(

not a probability
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Expectations
 a.k.a. expected value, mean or average of a 

random variable
 x is a random variable, the expectation of x
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The kth moment ][ kXE

The kth central moment ])[( k
XXE 

The 1st moment ][XEX 
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Important Expectations
 Mean

 Variance
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Notation:                     (σ: standard deviation ?)
Fact:

][2 xVar
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Entropy
 The entropy measures the fundamental 

uncertainty in the value of points selected 
randomly from a distribution.
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Univariate Gaussian Distribution

 Gaussian distribution, a.k.a. Gaussian density, 
normal density.

X~N(μ,σ2)

2

2

2
)(

2
1)( 









x

exp

E[X] =μ

Var[X] =σ2



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 44

Univariate Gaussian Distribution

 Gaussian distribution, a.k.a. Gaussian density, 
normal density.

X~N(μ,σ2)

2

2

2
)(

2
1)( 









x

exp

E[X] =μ

Var[X] =σ2
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Random Vectors
 A d-dimensional random vector is:

 Expected vector

T
dxxx ),,,( 21 X dR:X

pdf)(joint     ),,,()(~ 21 dxxxpXpX 
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Random Vectors
 Covariance matrix

]))([( TE μXμXΣ 
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Marginal pdf on a pair of 
random variables (xi, xj)

Properties:
Symmetric, Positive semidefinite
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Multivariate Gaussian Distribution

 X is a d-dimensional random vector





   )()(

2
1exp

||)2(
1)( 1

2/12/ μxΣμx
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Properties of N(μ,Σ)
 X is a d-dimensional 

random vector, and 

 If Y=ATX, where A is 
a d × k matrix, then

),(~ NX

Y~N(ATμ, ATΣA)
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On Covariance Matrix
 As mentioned before,  is symmetric and 

positive semidefinite.

 Thus,

TΦΛΦΣ  TΦΛΦΛ 2/12/1
: orthonormal matrix, whose columns are eigenvectors of . 

: diagonal matrix (eigenvalues). 

T))(( 2/12/1 ΦΛΦΛΣ 
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Mahalanobis Distance
 Mahalanobis distance

)()( 12 μxΣμx  Tr

),(~ NX





   )()(

2
1exp

||)2(
1)( 1

2/12/ μxΣμx
Σ

x T
dp

 



   )()(

2
1exp

||)2(
1)( 1

2/12/ μxΣμx
Σ

x T
dp



constant r2depends on 
the value of r2

P.C. Mahalanobis
(1894-1972)
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Discriminant Functions for 
Gaussian Density

 Minimum-error-rate classification
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Discriminant Functions for 
Gaussian Density

 Three cases
 Case 1

Classes are centered at different mean, and their 
feature components are pairwisely independent 
have the same variance.

 Case 2
Classes are centered at different mean, but have 

the same variation.
 Case 3

Arbitrary

IΣ 2i

ΣΣ i

ji ΣΣ 



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 53

Case 1: IΣ 2i
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Case 1: 

 It is a linear discriminant function

 where
 Weight vector

 Threshold/bias
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Case 1: IΣ 2i
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Case 1: 
 The decision boundary will be a hyperplane

perpendicular to the line btw. the means at somewhere. 

IΣ 2i

i j

Boundary btw. 
i and j
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Case 1: IΣ 2i

)()( 21  PP 

Minimum distance classifier (template matching)
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Case 1: IΣ 2i

)()( 21  PP 
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Case 1: IΣ 2i

)()( 21  PP 
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Case 1: IΣ 2i

)()( 21  PP 
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Case 2: ΣΣ i
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Case 2: ΣΣ i
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Case 2: ΣΣ i
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Case 2: ΣΣ i
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Case 3: ji ΣΣ 
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Decision surfaces are 
hyperquadrics, e.g.,
Hyperplanes
Hyperspheres
Hyperellipsoids
hyperhyperboloids
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Case 3: ji ΣΣ 

Non-simply connected decision 
regions can arise in one dimension 
for Gaussians having unequal 
variance.
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Case 3: ji ΣΣ 



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 68

Case 3: ji ΣΣ 
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Case 3: ji ΣΣ 
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Case 3: ji ΣΣ 
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Summary
 Bayesian Decision Theory

 Basic concepts
 Bayes theorem
 Bayes decision rule

 Feasibility of Bayes Decision Rule
 Prior probability + likelihood
 Solution I: counting relative frequencies
 Solution II: conduct density estimation
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Summary
 Bayes decision rule: The general scenario

 Allowing more than one feature
 Allowing more than two states of nature
 Allowing actions than merely deciding state of nature
 Loss function

 Expected loss (conditional risk)
 General Bayes decision rule
 Minimum-error-rate classification
 Discriminant functions
 Gaussian density
 Discriminant functions for Gaussian pdf.



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 73

k-means
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Any Question?


