MIMA Group

M L D M Chapter 2 Bayesian Decision Theory

Bayesian Decision Theory

- Bayesian decision theory is a statistical approach to data mining/pattern recognition
- Mathematical foundation for decision making
- Using probabilistic approach to help making decision so as to minimize the risk (cost).

Bayesian Decision Theory

- Basic Assumptions
 - The decision problem is posed (formalized) in probabilistic terms
 - All the relevant probability values are known
- Key Principle
 - Bayes Theorem

Preliminaries and Notations

- $\omega_i \in \{\omega_1, \omega_2, \dots, \omega_c\}$: a state of nature
 - $P(\omega_i)$: prior probability
 - **x**: feature vector
 - $p(\mathbf{x})$: evidence probability
 - $p(\mathbf{x} | \omega_i)$: class-conditional
 - density / likelihood
 - $P(\omega_i \mid \mathbf{x}): \mathbf{p}$
- posterior probability

Decision Before Observation

The Problem

To make a decision where
 Prior probability is known
 No observation is allowed

Naïve Decision Rule

Decide ω_1 if $P(\omega_1) > P(\omega_2)$, otherwise ω_2

- This is the best we can do without observation
- Fixed prior probabilities -> Same decisions all time

Bayes Theorem

 $P(\omega_i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_i) P(\omega_i)}{p(\mathbf{x})}$

$$p(\mathbf{x}) = \sum_{j=1}^{c} p(\mathbf{x} \mid \omega_i) P(\omega_i)$$

Thomas Bayes (1702-1761)

Decision After Observation

$$P(\omega_i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_i) P(\omega_i)}{p(\mathbf{x})}$$

$$p(\mathbf{x}) = \operatorname{arg\,max} P(\omega_i \mid \mathbf{x})$$

$$\omega_i$$

Special Cases

$$P(\omega_i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \omega_i) P(\omega_i)}{p(\mathbf{x})} \quad \left(\text{posterior} = \frac{\text{likelihood} \times \text{prior}}{\text{evidence}}\right)$$

- Case I: Equal prior probability
 - $\blacksquare P(\boldsymbol{\omega}_1) = P(\boldsymbol{\omega}_2) = \cdots = P(\boldsymbol{\omega}_c) = 1/c$
 - Depends on the likelihood $p(\mathbf{x}|\boldsymbol{\omega}_i)$
- Case II: Equal likelihood
 - $p(\mathbf{x}|\boldsymbol{\omega}_1) = p(\mathbf{x}|\boldsymbol{\omega}_2) = \cdots = p(\mathbf{x}|\boldsymbol{\omega}_c)$
 - Degenerate to naïve decision rule
- Normally, prior probability and likelihood function together in Bayesian decision process

An example

 $P(\omega_1) = 2/3$ $P(\omega_2) = 1/3$

What will the posterior probability for either type of fish look like?

class-conditional pdf for lightness

Decide ω_1 if $p(\mathbf{x}/\omega_1)P(\omega_1) > p(\mathbf{x}/\omega_2)P(\omega_2)$; otherwise decide ω_2

An example

posterior probability for either type of fish

h-axis: lightness of fish scales
v-axis: posterior probability for
each type of fish
Black curve: sea bass
Red curve: salmon
➢ For each value of x, the higher
curve yields the output of
Bayesian decision
➢ For each value of x, the
posteriors of either curve sum to
1.0

Another Example

MIMA

Problem statement

- A new medical test is used to detect whether a patient has a certain cancer or not, whose test result is either + (positive) or (negative)
- For patient with this cancer, the probability of returning positive test result is 0.98
- For patient without this cancer, the probability of returning negative test result is 0.97
- The probability for any person to have this cancer is 0.008

Question

If positive test result is returned, does she/he have cancer?

Another Example (Cont.)

 $x \in \{+, -\}$ ω_1 : cancer ω_2 : no cancer $P(\omega_1) = 0.008$ $P(\omega_2) = 1 - P(\omega_1) = 0.992$ $P(+ \mid \omega_1) = 0.98$ $P(- \mid \omega_1) = 1 - P(+ \mid \omega_1) = 0.02$ $P(- \mid \omega_2) = 0.97$ $P(+ \mid \omega_2) = 1 - P(- \mid \omega_2) = 0.03$ $P(\omega_1 \mid +) = \frac{P(\omega_1)P(+ \mid \omega_1)}{P(+)} = \frac{P(\omega_1)P(+ \mid \omega_1)}{P(\omega_1)P(+ \mid \omega_1) + P(\omega_2)P(+ \mid \omega_2)}$ 0.008×0.98 $= \frac{1}{0.008 \times 0.98 + 0.992 \times 0.03} = 0.2085$ $P(\omega_2 \mid +) > P(\omega_1 \mid +)$ No cancer! $P(\omega_2 \mid +) = 1 - P(\omega_1 \mid +) = 0.7915$

Feasibility of Bayes Formula

To compute posterior probability, we need to know prior probability and likelihood

A Further Example

MIMA

Problem

Based on the height of a car in some campus, decide whether it costs more than \$50,000 or not

 $\omega_1 : \text{price} > \$ 50,000$ $\omega_2 : \text{price} <=\$ 50,000$ x : height of a car

Decide ω_1 if $P(\omega_1 | \mathbf{x}) > P(\omega_2 | \mathbf{x})$; otherwise decide ω_2

Quantities to know: $P(\omega_1) \quad P(\omega_2) \quad P(x|\omega_1) \quad P(x|\omega_2)$ How to get them?

A Further Example (Cont.)

MIMA

16

Collecting samples

- Suppose we have randomly picked 1209 cars in the campus, got prices from their owners, and measured their heights
- Compute $P(\omega_1)$ and $P(\omega_2)$

A Further Example (Cont.)

MIMA

- Compute $P(\mathbf{x}|\omega_1) \quad P(\mathbf{x}|\omega_2)$
 - Discretize the height spectrum (say [0.5m, 2.5m]) into 20 intervals each with length 0.1m, and then count the number of cars falling into each interval for either class
- Suppose x = 1.05, which means that x falls into interval
 I_x = [1.0m, 1.1m]

For ω₁, # cars in I_x is 46, For ω₂, # cars in I_x is 59,

$$P(x = 1.05 | \omega_1) = \frac{46}{221} = 0.2081$$
$$P(x = 1.05 | \omega_2) = \frac{59}{988} = 0.0597$$

A Further Example (Cont.)

MIMA

Question

For a car with height 1.05m, is its price greater than \$50,000?

Is Bayes Decision Rule Optimal

Consider two categories

Decide ω_1 if $P(\omega_1 | \mathbf{x}) > P(\omega_2 | \mathbf{x})$; otherwise decide ω_2

When we observe x, the probability of error is:

 $P(error \mid \mathbf{x}) = \begin{cases} P(\omega_2 \mid \mathbf{x}) & \text{if we decide } \omega_1 \\ P(\omega_1 \mid \mathbf{x}) & \text{if we decide } \omega_2 \end{cases}$

Thus, under Bayes decision rule, we have

 $P(error \mid x) = \min[P(\omega_1 \mid \mathbf{x}), P(\omega_2 \mid \mathbf{x})]$

For every x, we ensure that P(error|x) is as small as possible

Thus, under Bayes decision rule, we have

 $P(error \mid x) = \min[P(\omega_1 \mid \mathbf{x}), P(\omega_2 \mid \mathbf{x})]$

For every x, we ensure that P(error|x) is as small as possible

Generalized Bayes Decision Rule

MIMA

Allowing to use more than one feature

 $x \in R \Longrightarrow x \in R^d$: d-dimensional Euclidean Space

Allowing more than two states of nature

$$\Omega = \{\omega_1, \omega_2, \dots, \omega_c\}$$
: a set of *c* states of nature

Allowing actions other than merely deciding the state of nature

$$A = \{\alpha_1, \alpha_2, \dots, \alpha_a\}$$
: a set of *a* possible *actions*

Note that $c \neq a$

Introducing a loss function more general than the probability of error

 $\lambda: \Omega \times A \to R$ (loss function)

 $\lambda_{ij} = \lambda(\omega_j, \alpha_i)$: the loss incurred for taking action α_i when the state of nature is ω_j

For ease of reference, it is usually written as:

$$\lambda_{ij} = \lambda(\alpha_i \mid \omega_j):$$

We want to minimize the expected loss in making decision.

Risk

than

 $\lambda_{ii} = \lambda(\omega_i, \alpha_i)$: the loss incurred for taking action α_i when the state of nature is ω_{i}

For ease of reference, it is usually written as:

$$\lambda_{ij} = \lambda(\alpha_i \mid \omega_j):$$

We want to minimize the expected loss in making decision.

Risk

Generalized Bayes Provision Pulo (Action $\alpha_1 =$ $\alpha_2 =$ $\alpha_3 =$ Class "Recipe A" "Recipe B" "No Recipe" 5 Problem $\omega_1 =$ "cancer" 50 10,000 $\omega_2 =$ "no cancer" 60 3 0

- Given a particular x, we have to decide which action to take
- To do this, we need to know the loss of taking each action α_i $(1 \le i \le a)$

$$\lambda_{ij} = \lambda(\alpha_i \mid \omega_j)$$
:

The action being taken α_i

True state of nature
$$\mathcal{O}_j$$

However, the true state of nature is uncertain

Expected (average) loss

We want to minimize the expected loss in making decision.

Risk

Generalized Bayes Design Puls (cont.)
Given x, the expected loss (risk)
associated with taking action

$$\alpha_r$$

 $R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x}) = \sum_{j=1}^{c} \lambda_{ij} P(\omega_j \mid \mathbf{x})$
The incurred loss of
taking action α_i in
case of true state of
nature being ω_j
The probability of ω_j
being the true state of
nature

The expected loss is also named as "conditional risk"

Suppose we have:

Action Class	$\alpha_1 =$ "Recipe A"	$\alpha_2 =$ "Recipe B"	$\alpha_3 =$ "No Recipe"
$\omega_1 =$ "cancer"	5	50	10,000
$\omega_2 =$ "no cancer"	60	3	0

For a particular x:

$$P(\omega_1 | \mathbf{x}) = 0.01$$

 $P(\omega_2 | \mathbf{x}) = 0.99$

$$R(\alpha_1 \mid \mathbf{x}) = \sum_{j=1}^{2} \lambda(\alpha_1 \mid \omega_j) \cdot P(\omega_j \mid \mathbf{x})$$
$$= \lambda(\alpha_1 \mid \omega_1) \cdot P(\omega_1 \mid \mathbf{x}) + \lambda(\alpha_1 \mid \omega_2) \cdot P(\omega_2 \mid \mathbf{x})$$
$$= 5 \times 0.01 + 60 \times 0.99 = 59.45$$

Similarly, we can get: $R(\alpha_2 | \mathbf{x}) = 3.47 \ R(\alpha_3 | \mathbf{x}) = 100$

0/1 Loss Function

$$R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x}) = \sum_{j=1}^{c} \lambda_{ij} P(\omega_j \mid \mathbf{x})$$

 $\lambda(\alpha_i \mid \omega_j) = \begin{cases} 0 & \alpha_i \text{ is a correct decision assiciated with } \omega_j \\ 1 & \text{otherwise} \end{cases}$

27

$$R(\alpha_i \mid \mathbf{x}) = P(error \mid \mathbf{x})$$

Bayes decision rule (general case)

$$\alpha(\mathbf{x}) = \underset{\alpha_i \in A}{\operatorname{arg\,min}} R(\alpha_i \mid \mathbf{x}) = \underset{\alpha_i \in A}{\operatorname{arg\,min}} \sum_{j=1}^c \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x})$$

$$R = \int R(\alpha(\mathbf{x}) \mid x) \cdot p(x) dx$$

Decision function

For every x, we ensure that the conditional risk R(a(x)|x) is as small as possible; Thus, the overall risk over all possible x must be as small as possible.

The optimal one to minimize the overall risk Its resulting overall risk is called the Bayesian risk

 $R(\alpha_1 \mid \mathbf{x}) = \lambda_{11} P(\omega_1 \mid \mathbf{x}) + \lambda_{12} P(\omega_2 \mid \mathbf{x})$ $R(\alpha_2 \mid \mathbf{x}) = \lambda_{21} P(\omega_1 \mid \mathbf{x}) + \lambda_{22} P(\omega_2 \mid \mathbf{x})$

Posterior probabilities are *scaled* before comparison.

Perform α_1 if $R(\alpha_2 | \mathbf{x}) > R(\alpha_1 | \mathbf{x})$; otherwise perform α_2 $\lambda_{21}P(\omega_1 | \mathbf{x}) + \lambda_{22}P(\omega_2 | \mathbf{x}) > \lambda_{11}P(\omega_1 | \mathbf{x}) + \lambda_{12}P(\omega_2 | \mathbf{x})$ $(\lambda_{21} - \lambda_{11})P(\omega_1 | \mathbf{x}) > (\lambda_{12} - \lambda_{22})P(\omega_2 | \mathbf{x})$ $(\lambda_{21} - \lambda_{11})p(\mathbf{x} | \omega_1)P(\omega_1) > (\lambda_{12} - \lambda_{22})p(\mathbf{x} | \omega_2)P(\omega_2)$ $\frac{p(\mathbf{x} | \omega_1)}{p(\mathbf{x} | \omega_2)} > \frac{(\lambda_{12} - \lambda_{22})}{(\lambda_{21} - \lambda_{11})}\frac{P(\omega_2)}{P(\omega_1)}$

33

Discriminant Function

Discriminant functions for multicategory

$$g_i(x): \mathbb{R}^d \to \mathbb{R} \quad (1 \le i \le c)$$

One function per category

Discriminant Function

Minimum Risk Case:

$$g_i(\mathbf{x}) = -R(\alpha_i \mid \mathbf{x})$$

Minimum Error-Rate Case:

$$g_i(\mathbf{x}) = P(\omega_i \mid \mathbf{x})$$
$$g_i(\mathbf{x}) = p(\mathbf{x} \mid \omega_i)P(\omega_i)$$

$$g_i(\mathbf{x}) = \ln p(\mathbf{x} \mid \omega_i) + \ln P(\omega_i)$$

Discriminant Function

MIMA

Relationship between minimum risk and minimum error rate

$$R(\alpha_{i} \mid \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_{i} \mid \omega_{j}) \cdot P(\omega_{j} \mid \mathbf{x})$$

$$= \sum_{j \neq i} \lambda(\alpha_{i} \mid \omega_{j}) \cdot P(\omega_{j} \mid \mathbf{x}) + \lambda(\alpha_{i} \mid \omega_{i}) \cdot P(\omega_{i} \mid \mathbf{x})$$

$$= \sum_{j \neq i} P(\omega_{j} \mid \mathbf{x})$$
error rate (误差率/错误率)
the probability that action
 α_{i} (decide ω_{i}) is wrong
Discriminant Function

- Various discriminant function
- Identical classification results

If f(.) is a *monotonically increasing* function, then $f(g_i(.))$'s are also be discriminant functions.

Example

$$f(x) = k \cdot x \ (k > 0) \qquad f(g_i(x)) = k \cdot g_i(x) \ (1 \le i \le c)$$
$$f(x) = \ln x \qquad f(g_i(x)) = \ln g_i(x) \ (1 \le i \le c)$$

Decision Regions

MIMA

 c discriminant functions result in c decision regions.

> $\mathcal{R}_{i} = \{ \mathbf{x} \mid g_{i}(\mathbf{x}) > g_{j}(\mathbf{x}) \quad \forall j \neq i \}$ where $\mathcal{R}_{i} \cap \mathcal{R}_{j} = \phi \ (i \neq j)$ and $Y_{i=1}^{c} \mathcal{R}_{i} = \mathcal{R}^{d}$

Decision boundary
 Decision regions are separated by decision boundaries

Two-category example

The Normal Distribution

Discrete random variable (X) – Assume integer

Probability mass function (pmf): p(x) = P(X = x)Cumulative distribution function (cdf): $F(x) = P(X \le x) = \sum_{t=-\infty}^{x} p(t)$

Continuous random variable (X)

Probability density function (pdf): p(x) or f(x) not a probability Cumulative distribution function (cdf): $F(x) = P(X \le x) = \int_{-\infty}^{x} p(t) dt$

- a.k.a. expected value, mean or average of a random variable
- x is a random variable, the expectation of x

$$E[x] = \begin{cases} \sum_{x=-\infty}^{\infty} xp(x) & x \text{ is discrete} \\ \int_{-\infty}^{\infty} xp(x) dx & x \text{ is continuous} \end{cases}$$

The k^{th} moment $E[X^k]$

The 1st moment $\mu_X = E[X]$

The *k*th central moment $E[(X - \mu_X)^k]$

Important Expectations

Mean

$$\mu_X = E[X] = \begin{cases} \sum_{x=-\infty}^{\infty} xp(x) & X \text{ is discrete} \\ \int_{-\infty}^{\infty} xp(x)dx & X \text{ is continuous} \end{cases}$$

Variance

$$\sigma_X^2 = Var[X] = E[(X - \mu_X)^2] = \begin{cases} \sum_{x = -\infty}^{\infty} (x - \mu_X)^2 p(x) & X \text{ is discrete} \\ \int_{-\infty}^{\infty} (x - \mu_X)^2 p(x) dx & X \text{ is continuous} \end{cases}$$

Notation: $\sigma^2 = Var[x]$ (σ : standard deviation ?) Fact: $\sigma^2 = Var[x] = E[x^2] - (E[x])^2$

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University

The entropy measures the fundamental

$$H[X] = \begin{cases} -\sum_{x=-\infty}^{\infty} p(x) \log p(x) & X \text{ is discrete} \\ -\int_{-\infty}^{\infty} p(x) \log p(x) dx & X \text{ is continuous} \end{cases}$$

r

42

Univariate Gaussian Distribution

Gaussian distribution, a.k.a. Gaussian density, normal density.

Univariate Gaussian Distribution G: 1.0 , $\mu = 0, \sigma^2 = 0.2, \sigma^$ nc $\mu = 0, \sigma^2 = 1.0, \mu = 0, \sigma^2 = 5.0, -$ 0.8 $\mu = -2, \sigma^2 = 0.5, \bullet$ X $b^{0.6}$ 0.6 0.2 E 0.0 5% -3 -2 2 -5 -1 1 -4 0 3 4 5 - x X Г

Random Vectors

MIMA

A d-dimensional random vector is:

$$\mathbf{X} = (x_1, x_2, \mathbf{K}, x_d)^T \quad \mathbf{X} : \Omega \to \mathbb{R}^d$$

$$X \sim p(X) = p(x_1, x_2, K, x_d)$$
 (joint pdf)

Expected vector

$$E[\mathbf{X}] = \begin{pmatrix} E[x_1] \\ E[x_2] \\ M \\ E[x_d] \end{pmatrix} \quad E[x_i] = \int_{-\infty}^{+\infty} x_i \underline{p(x_i)} dx_i \quad (1 \le i \le d)$$

Marginal pdf on the ith component.
$$\mu = E[\mathbf{X}] = (\mu_1, \mu_2, \mathbf{K}, \mu_d)^T$$

Random Vectors

• Covariance matrix

$$\Sigma = E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^{T}] = \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} & \Lambda & \sigma_{1d} \\ \sigma_{21} & \sigma_{2}^{2} & \Lambda & \sigma_{2d} \\ M & M & O & M \\ \sigma_{d1} & \sigma_{d2} & \Lambda & \sigma_{d}^{2} \end{pmatrix}$$

$$\sigma_{ij} = \sigma_{ji} = E[(x_{i} - \mu_{i})(x_{j} - \mu_{j})]$$

$$= \int_{-\infty}^{+\infty} (x_{i} - \mu_{i})(x_{j} - \mu_{j}) \underline{p}(x_{i}, x_{j}) dx_{i} dx_{j}$$

Properties:

Symmetric, Positive semidefinite

Marginal pdf on a pair of random variables (x_i, x_j)

Multivariate Gaussian Distribution

MIMA

X is a d-dimensional random vector

$$X \sim N(\mu, \Sigma)$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2}} \sum_{\mu=1}^{1/2} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right]$$

$$E[X] = \mu$$

$$E[(X - \mu)(X - \mu)^T] = \Sigma$$

Properties of *N*(μ,Σ)

 X is a d-dimensional random vector, and
 X ~ N(μ,Σ)

If Y=A^TX, where A is a d × k matrix, then

On Covariance Matrix

• As mentioned before, \sum is symmetric and positive semidefinite.

$\boldsymbol{\Sigma} = \boldsymbol{\Phi} \boldsymbol{\Lambda} \boldsymbol{\Phi}^{T} = \boldsymbol{\Phi} \boldsymbol{\Lambda}^{1/2} \boldsymbol{\Lambda}^{1/2} \boldsymbol{\Phi}^{T}$

 Φ : *orthonormal* matrix, whose columns are *eigenvectors* of Σ . Λ : *diagonal* matrix (*eigenvalues*).

Thus,

$$\boldsymbol{\Sigma} = (\boldsymbol{\Phi}\boldsymbol{\Lambda}^{1/2})(\boldsymbol{\Phi}\boldsymbol{\Lambda}^{1/2})^T$$

Mahalanobis Distance

Mahalanobis distance

$$r^{2} = (\mathbf{x} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

$$X \sim N(\mu, \Sigma)$$

P.C. Mahalanobis (1894-1972)

Discriminant Functions for Gaussian Density

MIMA

Minimum-error-rate classification

 $g_i(\mathbf{x}) = P(\omega_i \mid \mathbf{x}) \quad (1 \le i \le c)$ $g_i(\mathbf{x}) = \ln P(\omega_i \mid \mathbf{x})$ $g_i(\mathbf{x}) = \ln P(\mathbf{x} \mid \omega_i) + \ln P(\mathbf{x} \mid \omega_i)$ Constant, could be $p(\mathbf{x} \mid \omega_i) = \frac{1}{(2\pi)^{d/2} \mid \boldsymbol{\Sigma}_i \mid^{1/2}} \exp \left[\frac{1}{2} \sum_{i=1}^{d/2} \sum_{i=1}$ $g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i)$

Discriminant Functions for Gaussian Density

MIMA

Three cases

• Case 1
$$\Sigma_i = \sigma^2 \mathbf{I}$$

Classes are centered at different mean, and their feature components are pairwisely independent have the same variance.

• Case 2
$$\Sigma_i = \Sigma$$

Classes are centered at different mean, but have the same variation.

• Case 3
$$\Sigma_i \neq \Sigma_j$$

 \Box Arbitrary

Case 1:
$$\Sigma_i = \sigma^2 \mathbf{I}$$

irrelevant
 $g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mathbf{\mu}_i)^T \Sigma_i^{-1} (\mathbf{x} - \mathbf{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$

$$g_{i}(\mathbf{x}) = -\frac{1}{2\sigma^{2}} \| \mathbf{x} - \mathbf{\mu}_{i} \|^{2} + \ln P(\omega_{i}) \qquad \Sigma_{i}^{-1} = \frac{1}{\sigma^{2}} \\ = -\frac{1}{2\sigma^{2}} (\mathbf{x}_{\gamma}^{T} \mathbf{x} - 2\mathbf{\mu}_{i}^{T} \mathbf{x} + \mathbf{\mu}_{i}^{T} \mathbf{\mu}_{i}) + \ln P(\omega_{i}) \\ irrelevant$$

$$g_i(\mathbf{x}) = \frac{1}{\sigma^2} \boldsymbol{\mu}_i^T \mathbf{x} + \left[-\frac{1}{2\sigma^2} \boldsymbol{\mu}_i^T \boldsymbol{\mu}_i + \ln P(\omega_i) \right]$$

Case 1:
$$\Sigma_i = \sigma^2 \mathbf{I}$$

 $g_i(\mathbf{x}) = \frac{1}{\sigma^2} \boldsymbol{\mu}_i^T \mathbf{x} + \left[-\frac{1}{2\sigma^2} \boldsymbol{\mu}_i^T \boldsymbol{\mu}_i + \ln P(\omega_i) \right]$

It is a linear discriminant function

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$$

where

Weight vector

$$\mathbf{w}_i = \frac{1}{\sigma^2} \boldsymbol{\mu}_i$$

Threshold/bias

$$w_{i0} = -\frac{1}{2\sigma^2} \boldsymbol{\mu}_i^T \boldsymbol{\mu}_i + \ln P(\boldsymbol{\omega}_i)$$

Case 1:
$$\Sigma_{i} = \sigma^{2}\mathbf{I}$$

 $w_{i0} = -\frac{1}{2\sigma^{2}}\boldsymbol{\mu}_{i}^{T}\boldsymbol{\mu}_{i} + \ln P(\omega_{i})$
 $g_{i}(\mathbf{x}) = \mathbf{w}_{i}^{T}\mathbf{x} + w_{i0}$
 $\mathbf{w}_{i} = \frac{1}{\sigma^{2}}\boldsymbol{\mu}_{i}$
 $\mathbf{w}_{i}^{T}\mathbf{x} + w_{i0} = \mathbf{w}_{j}^{T}\mathbf{x} + w_{j0}$
 $(\mathbf{w}_{i}^{T} - \mathbf{w}_{j}^{T})\mathbf{x} = w_{j0} - w_{i0}$
 $(\mathbf{w}_{i}^{T} - \mathbf{w}_{j}^{T})\mathbf{x} = \frac{1}{2}(\boldsymbol{\mu}_{i}^{T}\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}^{T}\boldsymbol{\mu}_{j}) - \sigma^{2}\ln\frac{P(\omega_{i})}{P(\omega_{j})}$
 $(\boldsymbol{\mu}_{i}^{T} - \boldsymbol{\mu}_{j}^{T})\mathbf{x} = \frac{1}{2}((\mathbf{\mu}_{i}^{T} - \mathbf{\mu}_{j}^{T})(\mathbf{\mu}_{i} + \mathbf{\mu}_{j}) - \sigma^{2}\frac{(\mathbf{\mu}_{i}^{T} - \mathbf{\mu}_{j}^{T})(\mathbf{\mu}_{i} - \mathbf{\mu}_{j})}{\|\boldsymbol{\mu}_{i} - \mathbf{\mu}_{j}\|^{2}}\ln\frac{P(\omega_{i})}{P(\omega_{j})}$

Case 1: $\Sigma_i = \sigma^2 \mathbf{I}$

MIMA

The decision boundary will be a hyperplane perpendicular to the line btw. the means at somewhere.

Case 1: $\Sigma_i = \sigma^2 \mathbf{I}$

 $P(\omega_1) = P(\omega_2)$

Minimum distance classifier (template matching)

Case 1: $\Sigma_i = \sigma^2 \mathbf{I}$

MIMA

 $P(\omega_1) > P(\omega_2)$

Case 1: $\Sigma_i = \sigma^2 \mathbf{I}$

 $P(\omega_1) > P(\omega_2)$

Case 1: $\Sigma_i = \sigma^2 \mathbf{I}$

 $P(\omega_1) > P(\omega_2)$

Case 2: $\Sigma_i = \Sigma$

$$g_{i}(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{i})^{T} \boldsymbol{\Sigma}_{i}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{i}) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_{i}| + \ln P(\omega_{i})$$

$$g_{i}(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{i})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{i}) + \ln P(\omega_{i})$$

$$Mahalanobis \quad Irrelevant \ if$$

$$Distance \quad P(\omega_{i}) = P(\omega_{j}) \forall i, j$$

$$= -\frac{1}{2}(\mathbf{x}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x} - 2\boldsymbol{\mu}_{i}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x} + \boldsymbol{\mu}_{i}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{i}) + \ln P(\omega_{i})$$

$$Irrelevant$$

$$g_{i}(\mathbf{x}) = \mathbf{w}_{i}^{T} \mathbf{x} + w_{i0}$$

$$\mathbf{w}_{i} = \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{i}$$

$$w_{i0} = -\frac{1}{2} \boldsymbol{\mu}_{i}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{i} + \ln P(\omega_{i})$$

Case 2:
$$\sum_{i} = \sum_{\substack{w_{i} = \Sigma^{-1} \mu_{i} \\ w_{i0} = -\frac{1}{2} \mu_{i}^{T} \Sigma^{-1} \mu_{i} + \ln P(\omega_{i})}}$$
$$\mathbf{w} = \mathbf{x}^{-1} (\mathbf{\mu}_{i} - \mathbf{\mu}_{j})$$
$$\mathbf{w}^{T} (\mathbf{x} - \mathbf{x}_{0}) = 0$$

Case 2: $\Sigma_i = \Sigma$

Case 2: $\Sigma_i = \Sigma$

Case 3: $\Sigma_i \neq \Sigma_j$ irrelevant $g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{\mu}_i)^T \Sigma_i^{-1}(\mathbf{x} - \mathbf{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$ $g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{\mu}_i)^T \Sigma_i^{-1}(\mathbf{x} - \mathbf{\mu}_i) - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)$

$$g_{i}(\mathbf{x}) = \mathbf{x}^{T} \mathbf{W}_{i} \mathbf{x} + \mathbf{w}_{i}^{T} \mathbf{x} + w_{i0}$$
Without this term
In Case 1 and 2
$$\mathbf{W}_{i} = -\frac{1}{2} \Sigma_{i}^{-1}$$

Decision surfaces are hyperquadrics, e.g.,
Hyperplanes
Hyperspheres
Hyperellipsoids
hyperhyperboloids

$$w_{i0} = -\frac{1}{2}\boldsymbol{\mu}_i^T \boldsymbol{\Sigma}_i^{-1} \boldsymbol{\mu}_i - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i^{-1}| + \ln P(\boldsymbol{\omega}_i)$$

 $\mathbf{w}_i = \mathbf{\Sigma}_i^{-1} \mathbf{\mu}_i$

Case 3: $\Sigma_i \neq \Sigma_j$

MIMA

Non-simply connected decision regions can arise in one dimension for Gaussians having unequal variance.

Case 3: $\Sigma_i \neq \Sigma_i$

67

Case 3: $\Sigma_i \neq \Sigma_j$

Summary

- Bayesian Decision Theory
 - Basic concepts
 - Bayes theorem
 - Bayes decision rule
- Feasibility of Bayes Decision Rule
 - Prior probability + likelihood
 - Solution I: counting relative frequencies
 - Solution II: conduct density estimation

Summary

- Bayes decision rule: The general scenario
 - Allowing more than one feature
 - Allowing more than two states of nature
 - Allowing actions than merely deciding state of nature
 - Loss function
- Expected loss (conditional risk)
- General Bayes decision rule
- Minimum-error-rate classification
- Discriminant functions
- Gaussian density
- Discriminant functions for Gaussian pdf.

MIMA Group

Thank You!

Any Question?

 Xin-Shun Xu @ SDU
 School of Computer Science and Technology, Shandong University