M e
o M)

Chapter 3
Parameter Estimation
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Bayesian Theorem _I

P(@ | X) = p(x | w,)P(w;)
P(x)

p(x) = p(x| @)P(@)

m To compute posterior probability P(w, | x) , we
need to know:

p(x|w)  Pl(w)

[ How can we get these values? ]
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Samples

D =Dy, Dy, K, D

@1 Tty @2
The samples in D; are drawn P S
independently according to the ISR A
probability law p(x|w). That is, LT I
examples in D; are i.i.d. random L
variables, i.e., independent (D§
and identically distributed. i
It is easy to compute the prior P(w,) = ‘Dj
probability: ' c ‘ :)i‘
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Samples _I

m For class-conditional pdf:
Case I: p(x|w;) has certain parametric form
oe.g.
p(x|@;)~ N(pj, Z)
%/_/

Gj 9j Z(QI,HZ,K,Qm)T

olf X eRY 6, contains “d+d(d+1)/2” free parameters.

Case II: p(x|w;) doesn't have parametric form
o Next chapter.
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Goal

D =Dy, Dy, K, D

p(x | ;)= p(x]6))

Use fDJ to estimate the unknown
parameter vector 6,

0,=(6,0,,K 0
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Estimation Under Parametric Form | =

m Maximum-Likelihood Estimation

fView parameters as\ fEstimate parameter values by o
quantities whose \ maximizing the likelihood
values are fixed but (probability) of observing the

\ unknown ) \_actual examples. )

m Bayesian Estimation

a a4 )
View parameters as\ Observation of the actual
random variables )| training examples transforms
having some known parameters’ prior into posterior

\ prior distribution ) \ distribution. (via Bayes rule)  J
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Maximume-Likelihood Estimation I

m Because each class is considered individually,
the subscript used before will be dropped.

® Now the problem becomes:

Given a sample set D, whose elements are

drawn independently from a population D
possessing a Rnown parameter form, say p(x|0) ..
we want to choose a O that will make D to eoioy JO.°
occur most likely. . '.:. :::'...'.
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Maximum-Likelihood Estimation (Cont.) I

m Criterion of ML
D =1{X,,X,,K ,x_}
m By the independence assumption, we have

p(D|0) = p(x, |0)p(x, |O)A p(x,|0) =H p(x, |0)
m [he Likelihood Function
L®|D)=p(@|0) =] | p(x, |0)

O The_ ma_leum-Ilkellhood 0= argmax L(¢| D)
estimation: :
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Maximum-Likelihood Estimation (Cont.) I

m Often, we resort to maximize the log-likelihood
function
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Maximum-Likelihood Estimation (Cont.) I

m Find the extreme values using the method in
differential calculus.

m Gradient Operator
Let f(0) be a continuous function, where 6=(6,, 6,,...,0,)".

Gradient v, :( 0O O A 8]T

Operator O (91 ? O ‘92 T O Hn

m Find the extreme values by solving
V, =0
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The Gaussian Case | _I

m Case |: unknown p, and 2. is known

I D) = eXp[—%(X—u)T r (X—u)}

(27Z_)d/2 ¥
L(n| D)= p(@|p) =] p(x, |0)

1
@™ x|

n/2 HeXp[—%(xk - Z7(x, _U)}

(n|D)=InL(pn|D)

=-In(27)"™"* | 2|"* __Z(Xk W' Z7(x, —p)
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The Gaussian Case | I
(k| D) =InL(n|D)

:—ln(27z)nd/2 n/2 __Z(Xk u) Z_I(Xk u)

V0 2) = Y 2 (x, - =0

~ 1
":ﬁkz_:‘ ) Sample Mean!

( )
Intuitive Result: Maximum estimate for the unknown L is just

\tﬁe arithmetic average of training samples---sample mean.
J
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The Gaussian Case |l _I

m Case ll: both pu and 2. are unknown
m Consider univariate case

p(x| t1,0%) = — exp{—(x‘é‘)} 0=(0.0,) =(1,5°)

\/ﬂa 20
L0 D)= p(®]0) =] ] P |0) = ﬁexp{—(xk‘“)}

(272')n/20'n O 20_2

| 5
E X —
202 kZI( k lu)

= —In(27)"?6,"" —£Z(xk ~6)

2 k=l

1(0|D)=InL(®|D) =—In(27)">c" -
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The Gaussian Case |l _I

1 n

10| D) =~1n(27)"*0,"" ——>" (%, —6,)’
292 k=1
R | (‘UnEiasec[ Estimator: A
_Z (Xk B ‘91) A
vi@eo)=| % —o | FOI=0
! _n Z”: (x, —6)° Consistent Estimator:
20, o 20, | _ lim E[0]=0
unbiased i /
s 1@
‘ H=0 = Xk Arithmetic average of n vectors

. 1 . . .
6°=0,= = (X, —21)>  Arithmetic average of n matrices

(x —B)(x — 1)’
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MLE for Normal Population _I

n Sample Mean

1
=& E[p]=p

o _ 13 - X -, Nn-1
2= (Xk_ll)(xk_ll)T E[X]=—""X#X
NS N
C— 1 & (x. —f)(x, — )" Sample Covariance Matrix
ST L = (o] B >
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-

- l 2 - ] —~ - 5
E(oy,)= E(FZ (X, = My )) = E[EZ (X, —2%, s+ )]

n=| n=|\

| <& l < .
Z (-r )= 2#M,'§ Z X, T Juiﬂ. = E[E Z (X)) =2y lpy, + Mg ]

n] n=1 n=I

_E[_Z(I”) P’w ZE(IH) E(ﬂm)

n=| n=I

E(xi) =0+ 1’

] & :
E(ﬂw)_D(a”m)"'[E(ﬂw) D(_zxu]""[E(#w . e ZD(%)"‘}{

n=1 n=I
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Bayesian Estimation _I

m Settings

The parametric form of the likelihood function for each
category is known

However, Hj IS considered to be random variables
instead of being fixed (but unknown) values.

(1

n this case, we can no longer make a single ML estimate 6\
and then infer P(w, |x) based on P(w,) and p(x|w,)

4 How can we Fully exploit training
proceed? examples!

\C J
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Posterior Probabilities from sample I

D ={D,,D,,...,D,}

P(a)i,x,@): P(w.,x,D)
POSD) Y P(@),x,D)

P(w. | x,D) =

P(w.,x,D)=P(D)-P(w,,x|D)=P(D)-P(w, | D)-Pt '»,D)
Assumptions:

P(a)i | @) — P(a)|) P((oI | X, @) = —
P(x| @, D) = P(x| @, D,) JZ:;P(X'”P@J')P(”])
°0

Each class can be
onsidered independen

P(x| @, D,)P()
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Problem Formulation _I

P(o | x,D) = CP(X|a)i,@i)P(a)i)

Y P(x|@;,D;)P(®))

r N\
The Rey problem is to determine, P(x| @;,D,) ,treat each class

kinc[epenc[ent[y, the problem becomes P(X|D )

This is always the central problem of Bayesian Learning.
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Class-Conditional Density Estimation I

Assume p(x) is unknown but knowing it has a
fixed form with parameter vector 6.

p(x | @) — J. p(x} 0 | D)dﬂ 0:Random variable w.r.t. parametric form

= [ p(x|6,D)p(0 | )d0
:j p(x (—)) p(ﬂ | @)dﬂ x is independent of D given 6

O (@]
O
O o

The form of
distribution is assumed
known

The posterior density
we want to estimate
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Bayesian Estimation: General Procedure I

p(0]D) ="

Phase I:

p(x/0) D 6.D) |
| p(0p) = 200 :
parametric : p(D) |

for '
‘ o I _ p(0)p(D6)

training posterior I — A -

pet | Bayes |pdf :-p(ﬂ\ﬁi J p(6.D)d6 i
Formula ’: _ p(@)p(D|6) |
! [ p(8)p(D|6)de
prior pdf ! n .
' p(D|6) = | | p(x£]0)
p(6) I 1} ! |
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Bayesian Estimation: General Procedure I

Phase lI:
p(x| D) = [ p(x|0) p(0 | D)dO

p(x|6)
l parametric
form
posterior class-conditional
., pdf Law of pdf PR
D)y———— > p(X|D)
p(0|D) Total Prob. P(X

Phase llI:

(0 | x.0) = P2 D)P(@)

ZP(x|a)j,@j)P(a)j)
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The Gaussian Case _I

®m The univariate Gaussian: unknown p

Phase I p(e|@>=a1j p(x, |0)p(0)
P(re)+ P(X| )+ D p(u| D)
L o ] a(x=uY)
(x| 1) = —exn 2( . J

2
1 1 p—=n
= exp| ——
p(x) ro, p 2( o j

Other form of prior pdf could be assumed as well
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The Gaussian Case _I

Y 1 1(x-uY
(D) = J%G exp[—;(”a‘%” p(x| 1) = m{,exp{z(xaﬂ”
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The Gaussian Case _I

[ p(u | D) is an exponential function of a quadratic function of W, ]

thus p(¢ | D) 1is also a normal.

p(ﬂl@)NN(ﬂnﬂﬁ)

_l H— U, 2
=) p(u|D)= J_a 2( ]

O-n

\
= exp| — -2 + -
Toro. p{ = (0 =21+ )} 5
~3
1{fn 1 =
D) =a" —— + X @)
p(u| D) aexp{ 2{[02 00] [ Zk 5] ﬂ/ S
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The Gaussian Case _I

m Equating the coefficients in both form; then, we

have
2 2
no, |- o A N
My = Hy T Ky My =— 2 X
" \no;+0’) " nol+o’ ! ng‘
)y 0'30'2
O, = 2 2
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The Gaussian Case _I

Phase Il:  P(X| D) = j (x| 0) (0| D)de

p(4| D)+ p(x| p) p(x| D)
o1 |1 (x—u)
L p(X| 1) = 27meXp__§( - j

p(x| D) ~ N(u,,07)

How would p(x | D) look like in this case?
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The Gaussian Case _I

! 1(x—p)
p(x| D) = | p(x|u)p(u| D)l <”p(xu)—mgexp_——( j
P D)~ N ety 07)

01t fo] 55 Jo 4[5

1 1 (X—pu)’ 16’ +0? oiX+ol U, :
:2 eXp|:—( ) :|J.6Xp|:—2 2 2 (:u_ 2 éu du

2 6’ +o;

p(x|D) is an exponential function of a quadratic | o
function of x; thus, it is also a normal pdf. .
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The Gaussian Case _I

! 1(x—p)
p(x| D) = | p(x|u)p(u| D)l <’p(><ﬂ)—maexp_——( j
P D)~ N ety 07)

i (X | D) ~ N (07 +07)

1 1 (X—pu)’ 16’ +0? oiX+ol U, :
:2 eXp|:—( ) :|J’6Xp{_2 2 2 {:u_ 2 éu du

2 6’ +o;

p(x|D) is an exponential function of a quadratic | o
function of x; thus, it is also a normal pdf. .
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The Gaussian Case _I

Phase lll:

P(o | x,D) = CP(X|a)i,(Di)P(a)i)

> P(x|;,D;)P(»))
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Summary _I

m Key issue

Estimate prior and class-conditional pdf from training
set

Basic assumption on training examples: i.i.d.

m Two strategies to key issue
Parametric form for class-conditional pdf
oMaximum likelihood estimation
0o Bayesian estimation
No parametric form for class-conditional pdf
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Summary _I

m Maximum likelihood estimation
Settings: parameters as fixed but unknown values
The objective function: log-likelihood function
The gradient for the objective function should be zero
Gaussian

m Bayesian estimation
Settings: parameters as random variables
General procedure: |, II, [l

Gaussian case
Project 3.2
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Thank You !

Any Question?
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