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Bayesian Theorem

 To compute posterior probability                , we 
need to know:
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How can we get these values?
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Samples
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The samples in Dj are drawn 
independently according to the 
probability law p(x|j). That is, 
examples in Dj are i.i.d. random 
variables, i.e.,  independent 
and identically distributed.

It is easy to compute the prior 
probability: 
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Samples
 For class-conditional pdf:

 Case I: p(x|j) has certain parametric form
e.g. 

 If             j  contains “d+d(d+1)/2” free parameters.

 Case II: p(x|j) doesn’t have parametric form
Next chapter.
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Goal

},,,{ 21 cDDDD  D1 D2

D3

1 2

3

)|()|( jj pp θxx  )|()|( jj pp θxx 

Use Dj to estimate the unknown 
parameter vector j
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Estimation Under Parametric Form

 Maximum-Likelihood Estimation

 Bayesian Estimation

View parameters as 
quantities whose 
values are fixed but 
unknown

Estimate parameter values by 
maximizing the likelihood 
(probability) of observing the 
actual examples.

View parameters as 
random variables 
having some known 
prior distribution

Observation of the actual 
training examples transforms 
parameters’ prior into posterior 
distribution. (via Bayes rule)
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Maximum-Likelihood Estimation 

 Because each class is considered individually, 
the subscript used before will be dropped. 

 Now the problem becomes:

Given a sample set D, whose elements are 
drawn independently from a population 
possessing a known parameter form, say p(x|), 
we want to choose a    that will make D to 
occur most likely.

θ̂
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θ̂
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Maximum-Likelihood Estimation (Cont.) 

 Criterion of ML

 By the independence assumption, we have

 The Likelihood Function

 The maximum-likelihood 
estimation:
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Maximum-Likelihood Estimation (Cont.) 

 Often, we resort to maximize the log-likelihood 
function
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Maximum-Likelihood Estimation (Cont.) 

 Find the extreme values using the method in 
differential calculus.

 Gradient Operator
 Let f() be a continuous function, where =(1, 2,…, n)T.

 Find the extreme values by solving 
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The Gaussian Case I
 Case I:  unknown , and  is known 
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The Gaussian Case I
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Intuitive Result:  Maximum estimate for the unknown  is just 
the arithmetic average of training samples---sample mean.

Sample Mean!
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The Gaussian Case II
 Case II:  both  and  are unknown 
 Consider univariate case
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The Gaussian Case II
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MLE for Normal Population
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Bayesian Estimation
 Settings

 The parametric form of the likelihood function for each 
category is known

 However, j is considered to be random variables 
instead of being fixed (but unknown) values.

In this case, we can no longer make a single ML estimate 
and then infer                 based on            and 

θ̂
)|( xiP  )( iP  )|( ip x

How can we 
proceed?

Fully exploit  training 
examples!
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Posterior Probabilities from sample
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Each class can be 
considered independently

Each class can be 
considered independently
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Problem Formulation
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The key problem is to determine,                    ,treat each class 
independently, the problem becomes  
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This  is always the central problem of Bayesian Learning.
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Class-Conditional Density Estimation
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D  :Random  variable w.r.t. parametric form

x is independent of D given 

The form of 
distribution is assumed 

known

The posterior density 
we want to estimate

Assume p(x) is unknown but knowing it has a 
fixed form with parameter vector .
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Bayesian Estimation: General Procedure
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Phase I:
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Bayesian Estimation: General Procedure
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Phase III:
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The Gaussian Case
 The univariate Gaussian: unknown 

Phase I:

Dxpp  )|()(  )|( Dp 


















 


2

2
1exp

2
1)|(





 xxp



















 


2

0

0

0 2
1exp

2
1)(





p

Other  form of prior pdf could be assumed as well

)()|()|(
1

θθxθ ppp
n

k
k



D



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 25

The Gaussian Case
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The Gaussian Case
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The Gaussian Case
 Equating the coefficients in both form; then, we 

have
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The Gaussian Case

Phase II:
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The Gaussian Case

θxx dupupp  )|()|()|( DD

















 


2

2
1exp

2
1)|(





 xxp

),(~)|( 2
nnNp  D









dxxp

n

n

n
 


















 



















 


22

2
1exp

2
1exp

2
1)|( D












dxx

n

nn

n

n

n

n

n
 





































2

22

22

22

22

22

2

2
1exp)(

2
1exp

2
1

p(x|D)  is an exponential function of a quadratic 
function of x; thus, it is also a normal pdf. =?
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The Gaussian Case
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The Gaussian Case

Phase III:
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Summary
 Key issue

 Estimate prior and class-conditional pdf from training 
set

 Basic assumption on training examples: i.i.d.
 Two strategies to key issue

 Parametric form for class-conditional pdf
Maximum likelihood estimation
Bayesian estimation

 No parametric form for class-conditional pdf
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Summary
 Maximum likelihood estimation

 Settings: parameters as fixed but unknown values
 The objective function: log-likelihood function
 The gradient for the objective function should be zero
 Gaussian

 Bayesian estimation
 Settings: parameters as random variables
 General procedure: I, II, III
 Gaussian case
Project 3.2  
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Any Question?


