MIMA Groun

M L
 D M
 Chapter 3 Parameter Estimation

Contents

- Introduction
- Maximum-Likelihood Estimation
- Bayesian Estimation

Bayesian Theorem

$$
\begin{aligned}
& P\left(\omega_{i} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)}{p(\mathbf{x})} \\
& p(\mathbf{x})=\sum_{j=1}^{c} p\left(\mathbf{x} \mid \omega_{i}\right) P\left(\omega_{i}\right)
\end{aligned}
$$

- To compute posterior probability $P\left(\omega_{i} \mid \mathbf{x}\right)$, we need to know:

$$
p\left(\mathbf{x} \mid \omega_{i}\right) \quad P\left(\omega_{i}\right)
$$

How can we get these values?

Samples

$\mathcal{D}=\left\{\mathcal{D}_{1}, \mathcal{D}_{2}, \mathrm{~K}, \mathcal{D}_{c}\right\}$
The samples in D_{j} are drawn independently according to the probability law $p\left(x \mid \omega_{j}\right)$. That is, examples in D_{j} are i.i.d. random variables, i.e., independent and identically distributed.

It is easy to compute the prior probability:

$$
P\left(\omega_{i}\right)=\frac{\left|D_{j}\right|}{\sum_{i=1}^{c}\left|D_{i}\right|}
$$

Samples

- For class-conditional pdf:
- Case I: $p\left(\mathrm{x} \mid \omega_{j}\right)$ has certain parametric form口e.g.

$$
p\left(\mathbf{x} \mid \omega_{j}\right) \sim N\left(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)
$$

$$
\theta_{j} \longrightarrow \boldsymbol{\theta}_{j}=\left(\theta_{1}, \theta_{2}, \mathrm{~K}, \theta_{m}\right)^{T}
$$

वIf $X \in R^{d} \quad \theta_{j}$ contains " $d+d(d+1) / 2$ " free parameters.

- Case II: $p\left(\mathrm{x} \mid \omega_{j}\right)$ doesn't have parametric form口Next chapter.

Goal

$$
\mathscr{D}=\left\{\mathscr{D}_{1}, \mathscr{D}_{2}, \mathrm{~K}, \mathscr{D}_{c}\right\}
$$

$$
p\left(\mathbf{x} \mid \omega_{j}\right) \equiv p\left(\mathbf{x} \mid \boldsymbol{\theta}_{j}\right)
$$

Use \mathscr{D}_{j} to estimate the unknown
 parameter vector θ_{j}

$$
\boldsymbol{\theta}_{j}=\left(\theta_{1}, \theta_{2}, \mathrm{~K}, \theta_{m}\right)^{T}
$$

Estimation Under Parametric Form

■ Maximum-Likelihood Estimation

View parameters as quantities whose values are fixed but unknown

Estimate parameter values by maximizing the likelihood (probability) of observing the actual examples.

- Bayesian Estimation

View parameters as random variables having some known prior distribution

Observation of the actual training examples transforms parameters' prior into posterior distribution. (via Bayes rule)

Maximum-Likelihood Estimation

- Because each class is considered individually, the subscript used before will be dropped.
- Now the problem becomes:

```
Given a sample set \(\mathcal{D}\), whose elements are drawn independently from a population possessing a known parameter form, say \(p(x \mid \theta)\), we want to choose a \(\hat{\boldsymbol{\theta}}\) that will make \(\mathcal{D}\) to occur most likety.
```


Maximum-Likelihood Estimation (Cont.) MA

- Criterion of ML

$$
\mathcal{D}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathrm{~K}, \mathbf{x}_{n}\right\}
$$

- By the independence assumption, we have

$$
p(\mathscr{D} \mid \boldsymbol{\theta})=p\left(\mathbf{x}_{1} \mid \boldsymbol{\theta}\right) p\left(\mathbf{x}_{2} \mid \boldsymbol{\theta}\right) \Lambda p\left(\mathbf{x}_{n} \mid \boldsymbol{\theta}\right)=\prod_{k=1}^{n} p\left(\mathbf{x}_{k} \mid \boldsymbol{\theta}\right)
$$

- The Likelihood Function

$$
L(\boldsymbol{\theta} \mid \mathcal{D})=p(\mathcal{D} \mid \boldsymbol{\theta})=\prod_{k=1}^{n} p\left(\mathbf{x}_{k} \mid \boldsymbol{\theta}\right)
$$

■ The maximum-likelihood estimation:

$$
\hat{\boldsymbol{\theta}}=\arg \max _{\theta} L(\theta \mid D)
$$

Maximum-Likelihood Estimation (Cont.) M $_{\text {MA }}$

■ Often, we resort to maximize the log-likelihood function

$$
l(\boldsymbol{\theta} \mid \mathcal{D})=\ln L(\boldsymbol{\theta} \mid \mathcal{D})=\sum_{k=1}^{n} \ln p\left(\mathbf{x}_{k} \mid \boldsymbol{\theta}\right)
$$

$\hat{\boldsymbol{\theta}}=\arg \max _{\boldsymbol{\theta}} l(\boldsymbol{\theta} \mid \mathcal{D})$
why?

$$
\hat{\boldsymbol{\theta}}=\arg \max _{\boldsymbol{\theta}} L(\boldsymbol{\theta} \mid \mathcal{D})
$$

Maximum-Likelihood Estimation (Cont.) MA

- Find the extreme values using the method in differential calculus.
- Gradient Operator
- Let $f(\theta)$ be a continuous function, where $\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)^{T}$.

$$
\underset{\text { Operator }}{\text { Gradient }} \quad \nabla_{\theta}=\left(\frac{\partial}{\partial \theta_{1}}, \frac{\partial}{\partial \theta_{2}}, \Lambda, \frac{\partial}{\partial \theta_{n}}\right)^{T}
$$

■ Find the extreme values by solving

$$
\nabla_{\boldsymbol{\theta}} f=0
$$

The Gaussian Case I

- Case I: unknown μ, and Σ is known

$$
\begin{aligned}
p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right] \\
\begin{aligned}
L(\boldsymbol{\mu} \mid \mathcal{D}) & = \\
= & p(\mathcal{D} \mid \boldsymbol{\mu})=\prod_{k=1}^{n} p\left(\mathbf{x}_{k} \mid \boldsymbol{\theta}\right) \\
& =\frac{1}{(2 \pi)^{n d / 2}|\boldsymbol{\Sigma}|^{n / 2}} \prod_{k=1}^{n} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{k}-\boldsymbol{\mu}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{k}-\boldsymbol{\mu}\right)\right] \\
l(\boldsymbol{\mu} \mid \mathcal{D}) & =\ln L(\boldsymbol{\mu} \mid \mathcal{D}) \\
& =-\ln (2 \pi)^{n d / 2}|\boldsymbol{\Sigma}|^{n / 2}-\frac{1}{2} \sum_{k=1}^{n}\left(\mathbf{x}_{k}-\boldsymbol{\mu}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{k}-\boldsymbol{\mu}\right)
\end{aligned}
\end{aligned}
$$

The Gaussian Case I

$$
\begin{aligned}
& l(\boldsymbol{\mu} \mid \mathcal{D})= \ln L(\boldsymbol{\mu} \mid \mathcal{D}) \\
&=-\ln (2 \pi)^{n d / 2}|\boldsymbol{\Sigma}|^{n / 2}-\frac{1}{2} \sum_{k=1}^{n}\left(\mathbf{x}_{k}-\boldsymbol{\mu}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{k}-\boldsymbol{\mu}\right) \\
& \nabla_{\boldsymbol{\mu}} l(\boldsymbol{\mu} \mid \mathcal{D})=\sum_{k=1}^{n} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{k}-\boldsymbol{\mu}\right)=0 \\
& \hat{\boldsymbol{\mu}}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \quad \text { Sample Mean! }
\end{aligned}
$$

Intuitive Result: Maximum estimate for the unknown μ is just the arithmetic average of training samples---sample mean.

The Gaussian Case II

- Case II: both μ and \sum are unknown
- Consider univariate case

$$
\begin{aligned}
& p\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] \quad \boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}\right)^{T}=\left(\mu, \sigma^{2}\right)^{T} \\
& L(\boldsymbol{\theta} \mid \mathcal{D})=p(\mathcal{D} \mid \boldsymbol{\theta})=\prod_{k=1}^{n} p\left(x_{k} \mid \boldsymbol{\theta}\right)=\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} \prod_{k=1}^{n} \exp \left[-\frac{\left(x_{k}-\mu\right)^{2}}{2 \sigma^{2}}\right] \\
& l(\boldsymbol{\theta} \mid \mathcal{D})=\ln L(\boldsymbol{\theta} \mid \mathcal{D})=-\ln (2 \pi)^{n / 2} \sigma^{n}-\frac{1}{2 \sigma^{2}} \sum_{k=1}^{n}\left(x_{k}-\mu\right)^{2} \\
& =-\ln (2 \pi)^{n / 2} \theta_{2}^{n / 2}-\frac{1}{2 \theta_{2}} \sum_{k=1}^{n}\left(x_{k}-\theta_{1}\right)^{2}
\end{aligned}
$$

The Gaussian Case II

$$
l(\boldsymbol{\theta} \mid \mathcal{D})=-\ln (2 \pi)^{n / 2} \theta_{2}^{n / 2}-\frac{1}{2 \theta_{2}} \sum_{k=1}^{n}\left(x_{k}-\theta_{1}\right)^{2}
$$

$$
\nabla_{\boldsymbol{\theta}} l(\boldsymbol{\theta} \mid \mathcal{D})=\left[\begin{array}{c}
\frac{1}{\theta_{2}} \sum_{k=1}^{n}\left(x_{k}-\theta_{1}\right) \\
-\frac{n}{2 \theta_{2}}+\sum_{k=1}^{n} \frac{\left(x_{k}-\theta_{1}\right)^{2}}{2 \theta_{2}^{2}}
\end{array}\right]=\mathbf{0} \begin{gathered}
\text { Unbiased Estimator: } \\
\text { E[}[\boldsymbol{\theta}]=\boldsymbol{\theta} \\
\text { Consistent Estimator: } \\
\lim _{n \rightarrow \infty} E[\hat{\boldsymbol{\theta}}]=\boldsymbol{\theta}
\end{gathered}
$$

$$
\begin{cases}\hat{\mu}=\hat{\theta}_{1}=\overbrace{1}^{\frac{1}{n} \sum_{k=1}^{n} x_{k}} & \text { Arithmetic average of } n \\
\hat{\sigma}^{2}=\hat{\theta}_{2}=\underbrace{=\frac{1}{n} \sum_{k=1}^{n}\left(x_{k}-\hat{\mu}\right)^{2}}_{\text {hiased }} & \begin{array}{r}
\text { Arithmetic average of } n \\
\left(\mathbf{x}_{k}-\hat{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{k}-\hat{\boldsymbol{\mu}}\right)^{T}
\end{array}\end{cases}
$$

MLE for Normal Population

$$
\begin{array}{r}
\hat{\boldsymbol{\mu}}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \\
\hat{\boldsymbol{\Sigma}}=\frac{1}{n} \sum_{k=1}^{n}\left(\mathbf{x}_{k}-\hat{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{k}-\hat{\boldsymbol{\mu}}\right)^{T} \\
\mathbf{C}=\frac{1}{n-1} \sum_{k=1}^{n}\left(\mathbf{x}_{k}-\hat{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{k}-\hat{\boldsymbol{\mu}}\right)^{T}
\end{array}
$$

Sample Mean

$$
E[\hat{\boldsymbol{\mu}}]=\boldsymbol{\mu}
$$

$$
E[\hat{\boldsymbol{\Sigma}}]=\frac{n-1}{n} \boldsymbol{\Sigma} \neq \boldsymbol{\Sigma}
$$

Sample Covariance Matrix

$$
E[\mathbf{C}]=\mathbf{\Sigma}
$$

$$
\begin{aligned}
& E\left(\sigma_{M L}^{2}\right)=E\left(\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\mu_{M L}\right)^{2}\right)=E\left[\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}^{2}-2 x_{n} \mu_{M L}+\mu_{M L}^{2}\right)\right] \\
& =E\left[\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}^{2}\right)-2 \mu_{M L} \cdot \frac{1}{N} \sum_{n=1}^{N} x_{n}+\mu_{M L}^{2}\right]=E\left[\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}^{2}\right)-2 \mu_{M L} \bullet \mu_{M L}+\mu_{M L}^{2}\right] \\
& =E\left[\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}^{2}\right)-\mu_{M L}^{2}\right]=\frac{1}{N} \sum_{n=1}^{N} E\left(x_{n}^{2}\right)-E\left(\mu_{M L}^{2}\right) \\
& E\left(x_{n}^{2}\right)=\sigma^{2}+\mu^{2} \\
& E\left(\mu_{M L}^{2}\right)=D\left(\mu_{M L}\right)+\left[E\left(\mu_{M L}\right)\right]^{2}=D\left(\frac{1}{N} \sum_{n=1}^{N} x_{n}\right)+\left[E\left(\mu_{M L}\right)\right]^{2}=\frac{1}{N^{2}} \sum_{n=1}^{N} D\left(x_{n}\right)+\mu^{2}
\end{aligned}
$$

Bayesian Estimation

- Settings
- The parametric form of the likelihood function for each category is known
- However, θ_{j} is considered to be random variables instead of being fixed (but unknown) values.

```
In this case, we can no longer make a single MML estimate \hat{\boldsymbol{0}}
and then infer P( }\mp@subsup{\omega}{i}{}|\mathbf{x})\mathrm{ based on P( }\mp@subsup{\omega}{i}{})\mathrm{ and }p(\mathbf{x}|\mp@subsup{\omega}{i}{}
```


How can we proceed?

Fully exploit training
examples!

Posterior Probabilities from sample

$$
\begin{aligned}
& \mathscr{D}=\left\{\mathcal{D}_{1}, \mathscr{D}_{2}, \ldots, \mathcal{D}_{c}\right\} \\
& P\left(\omega_{i} \mid \mathbf{x}, \mathscr{D}\right)=\frac{P\left(\omega_{i}, \mathrm{x}, \mathscr{D}\right)}{P(\mathrm{x}, \mathscr{D})}=\frac{P\left(\omega_{i}, \mathrm{x}, \mathscr{D}\right)}{\sum_{j=1}^{c} P\left(\omega_{j}, \mathrm{x}, \mathscr{D}\right)} \\
& P\left(\omega_{i}, \mathbf{x}, \mathcal{D}\right)=P(D) \cdot P\left(\omega_{i}, \mathrm{x} \mid \mathcal{D}\right)=P(D) \cdot P\left(\omega_{i} \mid \mathscr{D}\right) \cdot P\left({ }^{\prime} \omega_{i}, \mathscr{D}\right)
\end{aligned}
$$

Assumptions:

$$
\begin{aligned}
& P\left(\omega_{i} \mid \mathcal{D}\right)=P\left(\omega_{i}\right) \quad P\left(\omega_{i} \mid \mathbf{x}, \mathcal{D}\right)=\frac{P\left(\mathbf{x} \mid \omega_{i}, \mathcal{D}_{i}\right) P\left(\omega_{i}\right)}{\sum_{j=1}^{c} P\left(\mathbf{x} \mid \omega_{j}, \mathscr{D}_{j}\right) P\left(\omega_{j}\right)} \\
& P\left(\mathbf{x} \mid \omega_{i}, \mathscr{D}\right)=P\left(\mathbf{x} \mid \omega_{i}, \mathcal{D}_{i}\right)
\end{aligned}
$$

Problem Formulation

$$
P\left(\omega_{i} \mid \mathbf{x}, \mathscr{D}\right)=\frac{P\left(\mathbf{x} \mid \omega_{i}, \mathscr{D}_{i}\right) P\left(\omega_{i}\right)}{\sum_{j=1}^{c} P\left(\mathbf{x} \mid \omega_{j}, \mathscr{D}_{j}\right) P\left(\omega_{j}\right)}
$$

The key problem is to determine, $P\left(\mathbf{x} \mid \omega_{i}, \mathscr{D}_{i}\right)$, treat each class independently, the problem 6ecomes $P(\mathbf{x} \mid \mathcal{D})$

This is always the central problem of Bayesian Learning.

Class-Conditional Density Estimation

Assume $p(x)$ is unknown but knowing it has a fixed form with parameter vector θ.

$$
\begin{aligned}
p(\mathbf{x} \mid \mathcal{D}) & =\int p(\mathbf{x}, \boldsymbol{\theta} \mid D) d \boldsymbol{\theta} \quad \theta \text { :Random variable w.r.t. parametric form } \\
& =\int p(\mathbf{x} \mid \boldsymbol{\theta}, D) p(\boldsymbol{\theta} \mid \mathscr{D}) d \boldsymbol{\theta} \\
& =\int p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid \mathcal{D}) d \boldsymbol{\theta} \quad \mathrm{x} \text { is independent of } \mathrm{D} \text { given } \theta
\end{aligned}
$$

> The posterior density we want to estimate

Bayesian Estimation: General Procedure

$p(\boldsymbol{\theta} \mid \mathcal{D})=$?

Phase I:

Bayesian Estimation: General Procedure

Phase II:

$$
\begin{aligned}
& p(\mathbf{x} \mid \mathscr{D})=\int p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid \mathscr{D}) d \boldsymbol{\theta} \\
& p(\mathbf{x} \mid \boldsymbol{\theta}) \\
&
\end{aligned}
$$

Phase III:

$$
P\left(\omega_{i} \mid \mathbf{x}, \mathcal{D}\right)=\frac{P\left(\mathbf{x} \mid \omega_{i}, \mathscr{D}_{i}\right) P\left(\omega_{i}\right)}{\sum_{j=1}^{c} P\left(\mathbf{x} \mid \omega_{j}, \mathscr{D}_{j}\right) P\left(\omega_{j}\right)}
$$

The Gaussian Case

- The univariate Gaussian: unknown μ

Phase I: $\quad p(\boldsymbol{\theta} \mid \mathcal{D})=\alpha \prod_{k=1}^{n} p\left(\mathbf{x}_{k} \mid \boldsymbol{\theta}\right) p(\boldsymbol{\theta})$

$$
\begin{aligned}
& \underline{p(\mu)}+\underset{\sim}{p(x \mid \mu)}+D \| p(\mu \mid D) \\
& \longrightarrow p(x \mid \mu)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right] \\
& \longrightarrow p(\mu)=\frac{1}{\sqrt{2 \pi} \sigma_{0}} \exp \left[-\frac{1}{2}\left(\frac{\mu-\mu_{0}}{\sigma_{0}}\right)^{2}\right]
\end{aligned}
$$

Other form of prior pdf could be assumed as well

The Gaussian Case

$$
\left\{\begin{array}{l}
p(\mu)=\frac{1}{\sqrt{2 \pi} \sigma_{0}} \exp \left[-\frac{1}{2}\left(\frac{\mu-\mu_{0}}{\sigma_{0}}\right)^{2}\right] p(x \mid \mu)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right] \\
p(\boldsymbol{\theta} \mid \mathcal{D})=\alpha \prod_{k=1}^{n} p\left(\mathbf{x}_{k} \mid \boldsymbol{\theta}\right) p(\boldsymbol{\theta}) \\
p(\mu \mid \mathcal{D})=\alpha \prod_{k=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x_{k}-\mu}{\sigma}\right)^{2}\right] \cdot \frac{1}{\sqrt{2 \pi} \sigma_{0}} \exp \left[-\frac{1}{2}\left(\frac{\mu-\mu_{0}}{\sigma_{0}}\right)^{2}\right] \\
=\alpha^{\prime} \exp \left[-\frac{1}{2}\left(\sum_{k=1}^{n}\left(\frac{x_{k}-\mu}{\sigma}\right)^{2}+\left(\frac{\mu-\mu_{0}}{\sigma_{0}}\right)^{2}\right)\right] \\
=\alpha^{\prime \prime} \exp \left[-\frac{1}{2}\left[\left(\frac{n}{\sigma^{2}}+\frac{1}{\sigma_{0}^{2}}\right) \mu^{2}-2\left(\frac{1}{\sigma^{2}} \sum_{k=1}^{n} x_{k}+\frac{\mu_{0}}{\sigma_{0}^{2}}\right) \mu\right]\right.
\end{array}\right.
$$

The Gaussian Case

$p(\mu \mid \mathcal{D})$ is an exponential function of a quadratic function of μ; thus $p(\mu \mid \mathcal{D})$ is also a normal.

$$
p(\mu \mid \mathcal{D}) \sim N\left(\mu_{n}, \sigma_{n}^{2}\right)
$$

$$
\longmapsto p(\mu \mid \mathcal{D})=\frac{1}{\sqrt{2 \pi} \sigma_{n}} \exp \left[-\frac{1}{2}\left(\frac{\mu-\mu_{n}}{\sigma_{n}}\right)^{2}\right]
$$

$$
=\frac{1}{\sqrt{2 \pi} \sigma_{n}} \exp \left[-\frac{1}{2 \sigma_{n}^{2}}\left(\mu^{2}-2 \mu_{n} \mu+\mu_{n}^{2}\right)\right]
$$

$$
p(\mu \mid \mathcal{D})=\alpha^{\prime \prime} \exp \left[-\frac{1}{2}\left[\left(\frac{n}{\sigma^{2}}+\frac{1}{\sigma_{0}^{2}}\right) \mu^{2}-2\left(\frac{1}{\sigma^{2}} \sum_{k=1}^{n} x_{k}+\frac{\mu_{0}}{\sigma_{0}^{2}}\right) \mu\right]\right]
$$

The Gaussian Case

- Equating the coefficients in both form; then, we have

$$
\begin{aligned}
& \mu_{n}=\left(\frac{n \sigma_{0}^{2}}{n \sigma_{0}^{2}+\sigma^{2}}\right) \hat{\mu}_{n}+\frac{\sigma^{2}}{n \sigma_{0}^{2}+\sigma^{2}} \mu_{0} \quad \hat{\mu}_{n}=\frac{1}{n} \sum_{k=1}^{n} x_{k} \\
& \sigma_{n}^{2}=\frac{\sigma_{0}^{2} \sigma^{2}}{n \sigma_{0}^{2}+\sigma^{2}}
\end{aligned}
$$

The Gaussian Case

Phase II: $\quad p(\mathbf{x} \mid \mathcal{D})=\int p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid \mathcal{D}) d \boldsymbol{\theta}$

$$
\begin{gathered}
\underline{\underline{p(\mu \mid D)}}+\stackrel{p(x \mid \mu)}{\Longrightarrow} p(x \mid D) \\
\longrightarrow p(x \mid \mu)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right] \\
\longrightarrow p(\mu \mid \mathcal{D}) \sim N\left(\mu_{n}, \sigma_{n}^{2}\right)
\end{gathered}
$$

How would $p(x \mid \mathcal{D})$ Cook like in this case?

The Gaussian Case

$$
\begin{aligned}
& p(\mathbf{x} \mid \mathcal{D})=\int p(\mathbf{x} \mid u) p(u \mid \mathscr{D}) d \boldsymbol{\theta}\left\{\begin{array}{l}
p(x \mid \mu)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right] \\
p(\mu \mid \mathcal{D}) \sim N\left(\mu_{n}, \sigma_{n}^{2}\right)
\end{array}\right. \\
& p(x \mid \mathcal{D})=\frac{1}{2 \pi \sigma \sigma_{n}} \int \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right] \exp \left[-\frac{1}{2}\left(\frac{\mu-\mu_{n}}{\sigma_{n}}\right)^{2}\right] d \mu \\
& =\frac{1}{2 \pi \sigma \sigma_{n}} \exp \left[-\frac{1}{2} \frac{\left(x-\mu_{n}\right)^{2}}{\sigma^{2}+\sigma_{n}^{2}}\right] \int \exp \left[-\frac{1}{2} \frac{\sigma^{2}+\sigma_{n}^{2}}{\sigma^{2} \sigma_{n}^{2}}\left(\mu-\frac{\sigma_{n}^{2} x+\sigma^{2} \mu_{n}}{\sigma^{2}+\sigma_{n}^{2}}\right)^{2}\right] d \mu
\end{aligned}
$$

$p(x \mid \mathcal{D})$ is an exponential function of a quadratic function of x : thus, it is also a normal pdf.

$$
=\text { ? }
$$

The Gaussian Case

$$
\begin{align*}
& { }_{\text {ont }} p(x \mid \mathcal{D}) \sim N\left(\mu_{n}, \sigma^{2}+\sigma_{n}^{2}\right) \\
& =\frac{1}{2 \pi \sigma \sigma_{n}} \exp \left[-\frac{1}{2} \frac{\left(x-\mu_{n}\right)^{2}}{\sigma^{2}+\sigma_{n}^{2}}\right] \int \exp \left[-\frac{1}{2} \frac{\sigma^{2}+\sigma_{n}^{2}}{\sigma^{2} \sigma_{n}^{2}}\left(\mu-\frac{\sigma_{n}^{2} x+\sigma^{2} \mu_{n}}{\sigma^{2}+\sigma_{n}^{2}}\right)^{2}\right] d \mu \\
& p(x \mid \mathcal{D}) \text { is an exponential function of a quadratic } \\
& \text { function of } x \text { : thus, it is also a normal pdf. }
\end{align*}
$$

The Gaussian Case

Phase III:

$$
P\left(\omega_{i} \mid \mathbf{x}, \mathcal{D}\right)=\frac{P\left(\mathbf{x} \mid \omega_{i}, \mathscr{D}_{i}\right) P\left(\omega_{i}\right)}{\sum_{j=1}^{c} P\left(\mathbf{x} \mid \omega_{j}, \mathcal{D}_{j}\right) P\left(\omega_{j}\right)}
$$

Summary

■ Key issue

- Estimate prior and class-conditional pdf from training set
- Basic assumption on training examples: i.i.d.

■ Two strategies to key issue

- Parametric form for class-conditional pdf
\square Maximum likelihood estimation
םBayesian estimation
- No parametric form for class-conditional pdf

Summary

■ Maximum likelihood estimation

- Settings: parameters as fixed but unknown values
- The objective function: log-likelihood function
- The gradient for the objective function should be zero
- Gaussian

■ Bayesian estimation

- Settings: parameters as random variables
- General procedure: I, II, III
- Gaussian case

Project 3.2

MIMA Groun

[Thank You!]

Any Question?

