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Bayes Rule for Classification

 To compute the posterior probability, we need to 
know the prior probability and the likelihood.

 Case I:            has certain parametric form
 Maximum-Likelihood Estimation
 Bayesian Parameter Estimation

 Problems:
 The assumed parametric form may not fit the ground-

truth density encountered in practice, e.g., assumed 
parametric form: unimodal; ground-truth: multimodal
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Non-Parameter Estimation
 Case II:                 doesn’t have parametric form
 How?

)|( ixp 

Let the data 
speak for 
themselves!

Parzen Windows
Kn-Nearest-Neighbor
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Goals
 Estimate class-conditional densities

 Estimate posterior probabilities
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Density Estimation
 Assume p(x) is continuous, and R is small
 Fundamental fact

 The probability of a vector x fall into a region R:
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Given n examples (i.i.d.) {x1, x2,…, xn}, let K 
denote the random variable representing 
number of samples falling into R, K will take 
Binomial distribution:
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Density Estimation
 Assume p(x) is continuous, and R is small
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Density Estimation

 Use subscript n to take sample size into account

 We hope that:
 To do this, we should have
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Density Estimation

 Fix Vn and determine kn
 Parzen Windows

 Fix kn and determine Vn
 kn-Nearest-Neighbor

n

n
n V

nkp /)( x What items can be controlled?
How?
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Parzen Windows

 Assume Rn is a d-dimensional hypercube
 The length of each edge is hn

n

n
n V

nkp /)( x Fix Vn and determine kn

d
nn hV 

Emanuel Parzen
(1929-)

Determine kn with window 
function a.k.a. kernel function, 
potential function.
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Window function

 It defines a unit hypercube 
centered at the origin.
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Window function

 1 means that x’ falls within the hypercube of 
volume vn centered at x.

 kn: # samples inside the hypercube 
centered at x,
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Parzen Window Estimation

 is not limited to be the hypercube window 
function defined previously. It could be any pdf 
function
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Parzen Window Estimation

 pn(x) is a pdf function?
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Set (x-xi)/hn=u.

Window function
Being pdf

Window 
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Training 
data
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Parzen Window Estimation

 pn(x): superpostion (叠加）of 
n interpolations (插值）

 xi: contributes to pn(x) based 
on its “distance” from x.
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What is the effect of 
hn (window width) 
on the Parzen pdf?
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Parzen Window Estimation
 The effect of hn
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Parzen Window Estimation

The shape of δn(x) with decreasing values of hn
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Parzen Window Estimation

 When hn is very large, δn(x) will be broad with 
small amplitude.
 Pn(x) will be the superposition of n broad, slowly 

changing functions, i.e., being smooth with low 
resolution.

 When hn is very small, δn(x) will be sharp with 
large amplitude.
 Pn(x) will be the superposition of n sharp pulses, i.e., 

being variable/unstable with high resolution.
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Parzen Window Estimation

 Pazen window estimations for five samples, 
supposing that  φ(.) is a 2-d Gaussian pdf.
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Parzen Window Estimation
 Convergence conditions

 To ensure convergence, i.e.,

 We have the following additional constraints:
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Illustrations
 One dimension case:
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Illustrations
 One dimension case:
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Illustrations
 Two dimension case:
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Classification Example

Smaller window Larger window
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Choosing Window Function
 Vn must approach zero when n, but at a rate 

slower than 1/n, e.g.,

 The value of initial volume V1 is important.
 In some cases, a cell volume is proper for one 

region but unsuitable in a different region.

nVVn /1
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kn-Nearest Neighbor

 Fix kn and then determine Vn

 To estimate p(x), we can center a cell about x
and let it grow until it captures kn samples, 
kn is some specified function of n, e.g.,
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choose kn
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kn-Nearest Neighbor

Eight points in one dimension(n=8, d=1)
Red curve: kn=3
Black curve: kn=5

Thirty-one points in two dimensions
(n = 31, d=2)
Black surface: kn=5
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Estimation of A Posterior probability

Pn(i|x)=?
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Estimation of A Posterior probability

Pn(i|x)=?
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The value of Vn or kn can be 
determined base on Parzen window
or kn-nearest-neighbor technique.
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Nearest Neighbor Classifier
 Store all training examples
 Given a new example x to be classified, search 

for the training example (xi, yi) whose xi is most 
similar (or closest) to x, and predict yi. (Lazy 
Learning)
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Decision Boundaries
 Decision Boundaries

 The voronoi diagram
 Given a set of points, a Voronoi diagram describes 

the areas that are nearest to any given point.
 These areas can be viewed as zones of control.
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Decision Boundaries
 Decision boundary is 

formed by only retaining 
these line segment 
separating different classes.

 The more training examples 
we have stored, the more 
complex the decision 
boundaries can become.
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Decision Boundaries
 With large number of 

examples and noise in the 
labels, the decision boundary 
can become nasty!

 It can be bad some times-note 
the islands in this figure, they 
are formed because of noisy 
examples.

 If the nearest neighbor 
happens to be a noisy point, 
the prediction will be incorrect.

How to deal with this?



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 34

Effect of k
 Different k values give different results:

 Large k produces smoother boundaries
 The impact of class label noises canceled out by one another.

 When k is too large, what will happen.
 Oversimplified boundaries, e.g., k=N, we always predict the majority 

class
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How to Choose k?
 Can we choose k to minimize the mistakes that 

we make on training examples? (training error)
 What is the training error of nearest-neighbor?

 Can we choose k to minimize the mistakes that 
we make on test examples? (test error)
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How to Choose k?
 How do training error and test error change as 

we change the value ok k?
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Model Selection
 Choosing k for k-NN is just one of the many 

model selection problems we face in machine 
learning.

 Model selection is about choosing among 
different models
 Linear regression vs. quadratic regression
 K-NN vs. decision tree
 Heavily studied in machine learning, crucial 

importance in practice.
 If we use training error to select models, we will 

always choose more complex ones.
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Model Selection
 We can keep part of the labeled data apart as 

validation data.
 Evaluate different k values based on the 

prediction accuracy on the validation data
 Choose k that minimize validation error

Validation can be viewed as another name for testing, but the name testing is 
typically reserved for final evaluation purpose, whereas validation is mostly used 
for model selection purpose.
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Model Selection
 The impact of validation set size

 If we only reserve one point in our validation set, 
should we trust the validation error as a reliable 
estimate of our classifier’s performance?

 The larger the validation set, the more reliable our 
model selection choices are

 When the total labeled set is small, we might not be 
able to get a big enough validation set – leading to 
unreliable model selection decisions
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Model Selection
 K-fold Cross Validation

 Perform learning/testing K times
Each time reserve one subset for validation set, 

train on the rest

Special case: Learve one-out crass validation
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Other issues of kNN
 It can be computationally expensive to find the 

nearest neighbors!
 Speed up the computation by using smart data 

structures to quickly search for approximate solutions
 For large data set, it requires a lot of memory

 Remove unimportant examples
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Final words on KNN
 KNN is what we call lazy learning (vs. eager learning)

 Lazy: learning only occur when you see the test example
 Eager: learn a model before you see the test example, training examples can be 

thrown away after learning

 Advantage:
 Conceptually simple, easy to understand and explain
 Very flexible decision boundaries
 Not much learning at all!

 Disadvantage
 – It can be hard to find a good distance measure
 – Irrelevant features and noise can be very detrimental
 – Typically can not handle more than 30 attributes
 – Computational cost: requires a lot computation and memory
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Distance Metrics
 Distance Measurement is an importance factor 

for nearest-neighbor classifier, e.g.,
 To achieve invariant pattern recognition and data 

mining results.
The effect of change units
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Distance Metrics
 Distance Measurement is an importance factor 

for nearest-neighbor classifier, e.g.,
 To achieve invariant pattern recognition and data 

mining results.
The effect of change units
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Properties of a Distance Metric

 Nonnegativity

 Reflexivity

 Symmetry

 Triangle Inequality
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Minkowski Metric (Lp Norm)

 1. L1 norm

 2. L2 norm

 3. L norm
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Minkowski Metric (Lp Norm)

 1. L1 norm

 2. L2 norm

 3. L norm
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Summary
 Basic setting for non-parametric techniques

 Let the data speak for themselves
Parametric form not assumed for class-conditional 

pdf
 Estimate class-conditional pdf from training examples

Make predictions based on Bayes Theorem
 Fundamental results in density estimation
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Summary
 Parzen Windows

 Fix Vn and then determine kn
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Summary
 kn-Nearest-Neighbor

 Fix kn and then determine Vn

 Fix kn and then determine Vn

 To estimate p(x), we can center a cell about x
and let it grow until it captures kn samples, 
where is some specified function of n, e.g.,
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Principled rule to 
choose kn
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Any Question?


