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Decision-Making Approaches
 Probabilistic Approaches

 Based on the underlying probability densities of 
training sets.

 For example, Bayesian decision rule assumes that 
the underlying probability densities were available. 

 Discriminating Approaches
 Assume we know the proper forms for the 

discriminant functions.
 Use the samples to estimate the values of parameters 

of the classifier.
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Discriminant Function

 Useful way to represent classifier
 One function per category 
 Decide ωi, if

)1(       )(: ciRRg d
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Linear Discriminant Functions

 Easy for computing, analysis and learning.
 Linear classifiers are attractive candidates for 

initial, trial classifier.
 Learning by minimizing a criterion function, e.g., 

training error.

0)( i
T
ii wg  xwx

Bias/thresholdWeight vector

Difficulty: a small training error does not guarantee a small 
test error. 
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Linear Discriminant Functions
 Two-category case

0)( wg T  xwx 0)( if  Decide 1 xg

0)( if  Decide 2 xg

1011 )( wg T  xwx

2022 )( wg T  xwx

Thus, it is suffices to consider only d+1 parameters (w and d) 
instead of 2(d+1) parameters under two-category case.
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Linear Discriminant Functions
 Two-category case: Implementation
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Linear Discriminant Functions
 Two-category case: Implementation

0)( if  Decide 1 xg

0)( if  Decide 2 xg w0

1

1

x1 x2 xd

w1 w2 wd

x0=1

w0

1

1



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 9

Decision Surface
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Decision Surface
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0)( wg T  xwx 0)( xg1. A linear discriminant 
function divides the 
feature space by a 
hyperplane.

2. The orientation of the 
surface is determined by 
the normal vector w.

3. The location of the 
surface is determined by 
the bias w0.
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Augmented Space
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Augmented Space
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Augmented Space
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Augmented Space
 Decision surface in feature space:

 Decision surface in augmented space:

0)( 0  wg Txwx Pass through the origin 
only when w0=0.

0)(  yax Tg Always pass through the origin.
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By using this  mapping, the problem of finding weight wector 
w and threshold w0 is reduced to finding a single vector a.
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Linear Separability
 Two-Category Case
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Linear Separability
 Two-Category Case

1

2

Linearly Separable

Given a set of samples y1, y2, …, yn, 
some labeled 1 and some labeled 2,

if there exists a vector a such that

0i
Tya if yi is labeled 1

0i
Tya if yi is labeled 2

then the samples are said to be

Linearly Separable
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Linear Separability
 Two-Category Case

Given a set of samples y1, y2, …, yn, 
some labeled 1 and some labeled 2,

if there exists a vector a such that

0i
Tya if yi is labeled 1

0i
Tya if yi is labeled 2

then the samples are said to be

Linearly Separable

Withdrawing all labels of 
samples and replacing 
the ones labeled 2 by 
their negatives, it is 
equivalent to find a 
vector a such that

ii
T       0ya ii
T       0ya
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Solution Region in Feature Space

Separating Plane: 02211  nn yayaya  02211  nn yayaya 

Normalized Case
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Solution Region in Weight Space

 Solution Region in Weight Space

Shrink solution region by margin 0     , ||||/ bb iy

0i
Tya bi

T ya
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Linear Discriminant Functions

How to learn the weights?
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Criterion Function
 To facilitate learning, we usually define a scalar 

criterion function.
 It usually represents the penalty or cost of a 

solution.
 Our goal is to minimize its value.

 Function optimization.

How to minimize the criterion function?
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Gradient Decent Algorithm
 Our goal is to go downhill

a1

a2J(a) Contour Map
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Gradient Decent Algorithm
 Taylor Expansion

)()()()( TT xxOxxfxfxxf 

A real-valued d-variate function

A point in the d-dimensional Euclidean space

A small  shift in the d-dimensional Euclidean space

gradient of f(.) at x

The big oh order of

:: RRf d 

:dRx

:dRx

:)(xf

:)( xxO T  xxT 
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Gradient Decent Algorithm
 Taylor Expansion

What happens if we set Δx to be negatively 
proportional to the gradient at x, i.e.,

scalar) positive small a being (    )(  xfx 

)()()()()( xxOxfxfxfxxf tt  
Ignored when 
it is small

Being 
non-negative

There, we have f(x+ Δx )<=f(x)

)()()()( TT xxOxxfxfxxf 
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Gradient Decent Algorithm
 Basic strategy

 To minimize some function f(.), the general gradient 
descent techniques work in the following iterative 
way:

1. Set learning rate >0, and a small threshold >0.
2. Randomly initialize               as the starting point; set k=0.
3. do k=k+1
4.
5. until
6. Return xk and f(xk)

dRx 0

  )( 11   kkk xfxx 
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Gradient Decent Algorithm
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Why the negative gradient direction?

fdx x ifdecent steepest 

fdx x ifsteepest 
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Gradient Decent Algorithm

x1

x2f(x)

(x1, x2)
xf

go this way

How long a step shall we take?
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Gradient Decent Algorithm

x*

x0

f(x0) x1

f(x1)

x2

If improper learning rate (k) is used, 
the convergence rate may be poor. 

Basin of 
Attraction

1. Too small: slow convergence.
2. Too large: overshooting 

Furthermore, the best decent direction
is not necessary, and in fact is quite 
rarely, the direction of steepest decent.
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Newton’s Method
 Global minimum of a Paraboloid

Paraboloid Qxxxax TTcf
2
1)( 

We can find the global minimum of a paraboloid 
by setting its gradient to zero.

0|)(   kk
f Qxax xxx

aQx 1* 
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Newton’s Method

All smooth functions can be 
approximated by paraboloids in a 
sufficiently small neighborhood of 
any point.

xQxxgxxx  k
TT

kkk ff
2
1)()(

Taylor Series Expansion
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Newton’s Method
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Newton’s Method
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Comparison

Newton’s method Gradient Decent
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Comparison
 Newton’s Method will usually give a greater 

improvement per step than the simple gradient 
decent algorithm, even with optimal value of k.

 However, Newton’s Method is not applicable if 
the Hessian matrix Q is singular.

 Even when Q is nonsingular, compute Q is time 
consuming O(d3).

 It often takes less time to set k to a constant
(small than necessary) than it is to compute the 
optimum k at each step.
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Summary
 Discriminant functions
 Linear Discriminant Functions and Decision 

Surface
 The general setting, one function for each class
 The two-category case
 Minimization of criterion/objection function

 Linear Separability
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Summary
 Learning

 Gradient descent

 Newton’s method
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Any question?


