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Introduction

 (Artificial) Neural Networks are
 Computational models which mimic the brain's learning 

processes. 

 They have the essential features of neurons and their 
interconnections as found in the brain. 

 Typically, a computer is programmed to simulate these features. 

 Other definitions …
 A neural network is a massively parallel distributed processor 

made up of simple processing units, which has a natural 
propensity for storing experimental knowledge and making it 
available for use. It resembles the brain in two respects:

 Knowledge is acquired by the network from its environment through 
a learning process

 Interneuron connection strengths, known as synaptic weights, are 
used to store the acquired knowledge.
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Introduction

 A neural network is a machine learning 

approach inspired by the way in which the brain 

performs a particular learning task:

 Knowledge about the learning task is given in the 

form of examples.

 Inter neuron connection strengths (weights) are used 

to store the acquired information (the training 

examples).

 During the learning process the  weights are modified 

in order to model the particular learning task correctly 

on the training examples.
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Biological Neural Systems

 The brain is composed of approximately 100 

billion (10
11

) neurons

Schematic drawing of two biological 

neurons connected by synapses

Dendrites 

Synapse 

Axon 

A typical neuron collects signals from other

neurons through a host of fine structures called

dendrites.

The neuron sends out spikes of electrical activity

through a long, thin strand known as an axon,

which splits into thousands of branches.

At the end of the branch, a structure called a

synapse converts the activity from the axon into

electrical effects that inhibit or excite activity in

the connected neurons.

When a neuron receives excitatory input that is

sufficiently large compared with its inhibitory

input, it sends a spike of electrical activity down

its axon.

Learning occurs by changing the effectiveness of the synapses so that the 

influence of one neuron on the other changes 



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 6

Neuron
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Interconnections between Neurons
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Neural Networks

 A NN is a machine learning approach inspired 

by the way in which the brain performs a 

particular learning task

 Various types of neurons

 Various network architectures

 Various learning algorithms

 Various applications
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Characteristics of NN’s

 Characteristics of Neural Networks

 Large scale and parallel processing

 Robust

 Self-adaptive and organizing

 Good enough to simulate non-linear relations

 Hardware
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Historical Background

 1943 McCulloch and Pitts proposed the first 

computational models of neuron.

 1949 Hebb proposed the first learning rule.

 1958 Rosenblatt’s work in perceptrons.

 1969 Minsky and Papert’s exposed limitation of 

the theory.

 1970s Decade of dormancy for neural networks.

 1980-90s Neural network return (self-

organization, back-propagation algorithms, etc)
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Applications

 Combinatorial Optimization

 Pattern Recognition

 Bioinformatics

 Text processing

 Natural language processing

 Data Mining

 …
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Types

 Structure

 Feed-forward

 Feed-back

 Learning method

 Supervised 

 Unsupervised

 Signal type

 Continuous

 Discrete 
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The Neuron 

 The neuron is the basic information processing unit of 
a NN. It consists of:

1 A set of synapses or connecting links, each link 
characterized by a weight: 

W1, W2, …, Wm

2 An adder function (linear combiner) which computes 
the weighted sum of the inputs:

3 Activation function (squashing function)   for limiting 
the amplitude of the output of the neuron. 
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The Neuron
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Bias of a Neuron 

 Bias b has the effect of applying an affine 

transformation to u

v = u + b

 v is the induced field of the neuron 

v

u
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Bias as Extra Input

 Bias is an external parameter of the neuron. Can 

be modeled by adding an extra input.
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Activation Function

 1.Linear function

 2. Step function

 3. Ramp function
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Activation Function

 4. Logistic function 

 5. Hyperbolic tangent

 6. Gaussian function
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Activation function

real

unrestricted

[0,1]

[-1,+1]

Interval

continuous

0,1

-1,+1

-,+

binary

{-1,0,+1}

{-100,...,+100}

multi value

discrete

Activation
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Perceptron

 In 1943, McCulloch and Pitts proposed the first 

single neuron model.

 Hebb proposed the theory that the learning 

process is generated from the change of weights 

between synapses.

 Rosenblatt combined them together, and 

proposed “Perceptron”.

 Perceptron is just a single neural model, and is 

composed of synaptic weights and threshold.

 It is the simplest and earliest neural network 

model, used for classification.



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 21

Perceptron
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Error

A plane passes through the origin in 

the augmented input space.
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Perceptron

Given  training sets T1C1 and T2  C2 with

elements in form of x=(x0, x1, x2 , …, xm) T , where

x1, x2 , ... , xmR and x0= 1.

 Assume T1 and T2 are linearly separable.

 Find w=(w0, w1, w2 , ... , wm) T such that
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Perceptron

x1

x2

+
w1

w2

w3

w4

w5

w6

x

Which w’s correctly 

classify x?

What trick can be 

used?

+



d = +1

d = 1
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Perceptron

Is this w ok?

+



d = +1

d = 1

x1
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0T w x
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Perceptron

Is this w ok?

+



d = +1

d = 1
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Perceptron

Is this w ok?

+



d = +1

d = 1

x1
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+
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How to adjust w?
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Perceptron

Is this w ok?

+



d = +1

d = 1

x1

x2

+

x

0T w x
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How to adjust w?

w = x
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Perceptron

Is this w ok?

+



d = +1

d = 1

x1

x2

+

x

0T w x

w

How to adjust w?
w = x

reasonable?

( )T TT  wx xw xw x

<0 >0
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Perceptron

Is this w ok?

+



d = +1

d = 1

x1

x2

+

x

0T w x
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w = ?
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Learning Rule

 Upon misclassification on

+ d = +1

 d = 1

 w x

  w x

Define error

r d y 
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Learning Rule

r w x
Define error

r d y 
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Learning Rule

r w x
Learning Rate

Error (d  y)

Input
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Learning Rule
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Learning Rule

x y
( )  d yw x
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Learning Rule

x y
( )  d yw x



.

.

.
.
.
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d
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If the given training set is linearly separable, the learning 

process will converge in a finite number of steps.

How to prove?
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The Learning Scenario

x1

x2
+

x(1)

+
x(2)

x(3)

 x(4)
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The Learning Scenario

x1

x2

w0

+
x(1)

+
x(2)

x(3)

 x(4)
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The Learning Scenario

x1

x2

w0

+
x(1)

+
x(2)

x(3)

 x(4)

w1

w0
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The Learning Scenario

x1

x2
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The Learning Scenario

x1

x2
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The Learning Scenario

x1

x2
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+
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+
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The Learning Scenario

x1

x2
+

x(1)

+
x(2)

x(3)

 x(4)

w

The demonstration is in augmented space. 

Conceptually, in augmented space, we 

adjust the weight vector to fit the data.
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Weight Space

w1

w2

+
x

w

A weight in the shaded area will give correct 

classification for the positive example.
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Weight Space

w1

w2

+
x w

w = x

A weight in the shaded area will give correct 

classification for the positive example.
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Weight Space

w1

w2


x

w

A weight not in the shaded area will give 

correct classification for the negative example.
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Weight Space
A weight not in the shaded area will give 

correct classification for the negative example.

w1

w2


x

w

w = x
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Learning Scenario in Weight Space

w1

w2

+
x(1)+

x(2)

x(3)

 x(4)
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Learning Scenario in Weight Space

w1

w2

+
x(1)+

x(2)

x(3)

 x(4)

To correctly classify the 

training set, the weight 

must move into the shaded 

area.
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Learning Scenario in Weight Space

To correctly classify the 

training set, the weight 

must move into the shaded 

area.

w1

w2

+
x(1)+

x(2)

x(3)

 x(4)

w0

w1
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Learning Scenario in Weight Space

To correctly classify the 

training set, the weight 

must move into the shaded 

area.

w1

w2

+
x(1)+

x(2)

x(3)

 x(4)

w0

w1

w2



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 51

Learning Scenario in Weight Space

To correctly classify the 

training set, the weight 

must move into the shaded 

area.

w1

w2

+
x(1)+

x(2)

x(3)

 x(4)

w0

w1

w2 =w3
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Learning Scenario in Weight Space

w1

w2

+
x(1)+

x(2)

x(3)

 x(4)

w0

w1

w2 =w3
w4

To correctly classify the 

training set, the weight 

must move into the shaded 

area.
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Learning Scenario in Weight Space

To correctly classify the 

training set, the weight 

must move into the shaded 

area.

w1

w2

+
x(1)+

x(2)

x(3)

 x(4)

w0

w1

w2 =w3
w4

w5
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Learning Scenario in Weight Space

To correctly classify the 

training set, the weight 

must move into the shaded 

area.

w1

w2

+
x(1)+

x(2)

x(3)

 x(4)

w0

w1

w2 =w3
w4

w5

w6
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Learning Scenario in Weight Space

To correctly classify the 

training set, the weight 

must move into the shaded 

area.

w1

w2

+
x(1)+

x(2)

x(3)

 x(4)

w0

w1

w2 =w3
w4

w5

w6

w7
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Learning Scenario in Weight Space

To correctly classify the 

training set, the weight 

must move into the shaded 

area.

w1

w2

+
x(1)+

x(2)

x(3)

 x(4)

w0

w1

w2 =w3
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w5
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Learning Scenario in Weight Space

To correctly classify the 

training set, the weight 

must move into the shaded 

area.

w1

w2

+
x(1)+

x(2)

x(3)

 x(4)

w0

w1

w2 =w3
w4

w5
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w7
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Learning Scenario in Weight Space

To correctly classify the 

training set, the weight 

must move into the shaded 

area.

w1

w2

+
x(1)+

x(2)

x(3)

 x(4)

w0

w1

w2 =w3
w4

w5

w6

w7
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Learning Scenario in Weight Space

To correctly classify the 

training set, the weight 

must move into the shaded 

area.

w1

w2

+
x(1)+

x(2)

x(3)

 x(4)

w0

w1

w2 =w3
w4

w5

w6

w7
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w9w10 w11
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Learning Scenario in Weight Space

To correctly classify the 

training set, the weight 

must move into the shaded 

area.

w1

w2

+
x(1)+

x(2)

x(3)

 x(4)

w0

w11

Conceptually, in weight space, we move the weight into the feasible region.
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Least Mean Square Learning

 Minimize the cost function (error function):
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Least Mean Square Learning

 Our goal is to go downhill.

E(w)

w1

w2
Contour Map

(w1, w2)
w1

w2w
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Least Mean Square Learning

 Our goal is to go downhill.

E(w)

w1

w2
Contour Map

(w1, w2)
w1

w2w

How to find the steepest decent direction?
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Least Mean Square Learning

 Gradient Operator

Let f(w) = f (w1, w2,…, wm) be a function over Rm.
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Least Mean Square Learning

fw fw f

w

df : positive df : zero df : negative

Go uphill Plain Go downhill

,df f f    w w
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Least Mean Square Learning

fw fw f

w

df : positive df : zero df : negative

Go uphill Plain Go downhill

,df f f    w w

To minimize f , we choose

w =   f
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Least Mean Square Learning

 Minimize the cost function (error function):
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Least Mean Square Learning

 Minimize the cost function (error function):
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Least Mean Square Learning

 Learning Modes

 Batch Learning Mode

 Incremental Learning Mode
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Perceptron

 Summary

 Separability: some parameters get the training set 

perfectly correct

 Convergence: if the training is separable, perceptron 

will eventually converge (binary case)?

 The Perceptron convergence theorem

 The relation between perceptron and Bayes 

classifier
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Multilayer Perceptron

.  .  .

.  .  .

.  .  .

.  .  .

x1 x2 xm

y1 y2 yn

Hidden Layer  

Input Layer

Output Layer



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 72

How an MLP Works?

XOR

0
1

1

x1

x2

Example:

 Not linearly separable.

 Is a single layer perceptron 

workable?
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How an MLP Works?

0
1

1

XOR

x1

x2

Example:

L1
L200

01

11

L2L1

x1 x2 x3= 1

y1 y2
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How an MLP Works?

0
1

1

XOR

x1

x2

Example:

L1
L200

01

11

0
1

1

y1

y2

L3
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How an MLP Works?

Example:

0
1

1

y1

y2

L3

L2L1

x1 x2 x3= 1

L3

y1 y2

y3= 1

z
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Parity Problem

Is the problem linearly separable?

x1

x2

x3

0
1
1
0
1
0
0

000
001
010
011
100
101
110
111 1

x1 x2 x3
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Parity Problem

Is the problem linearly separable?

x1

x2

x3

0
1
1
0
1
0
0

000
001
010
011
100
101
110
111 1

x1 x2 x3
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Parity Problem

Is the problem linearly separable?
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Parity Problem

Is the problem linearly separable?
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Parity Problem
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Parity Problem
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Back Propagation Learning

 Learning on Output Neurons

 Learning on Hidden Neurons

 General Learning Rule

 Measure error 

 Reduce that error 

 By appropriately adjusting 

each of the weights in the 

network

.  .  .

.  .  .

.  .  .

.  .  .

x1 x2 xm

o1 o2 on

d1 d2 dn
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Back Propagation Learning

 Forward Pass:

 Error is calculated from outputs

 Used to update output weights

 Backward Pass:

 Error at hidden nodes is calculated by back 

propagating the error at the outputs through the new 

weights

 Hidden weights updated
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Symbols

 Subscript i, j, k, represent different neurons,  when j is 

the neuron of hidden layer, then i is on the left side of 

j, and k is on the right side of j.

 n is the iteration no.

 E(n) is the sum of instantaneous error energy of the 

nth iteration, its average is Eav.

 ej(n) is the error of the jth neuron on the nth iteration.

 dj(n) is the expected value of the jth neuron on the nth

iteration.
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Symbols

 yj(n) is output of the jth neuron on the nth iteration; if 

the jth neuron is the output layer, the Oj(n) can be 

used.

 wji(n) is the weight from i to j, its change is Δwji(n).

 vj(n) is the internal state of the jth neuron.

 φ(.) is the activation function of the jth neuron.

 θj is the threshold of the jth neuron.

 xi(n) is the ith element of the input sample.

 η is the learning rate.
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Symbols

 Signal-flow graph highlighting the details of 

output neuron k connected to hidden neuron j.
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Back Propagation Learning

 The error function of the jth neuron in output 

layer is:

 BP-1

 Instantaneous error E(n) is defined as:

 BP-2

 Eav is defined as (N is the number of training 

samples):

 BP-3
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Batch vs. On-Line Learning

 In the batch learning, adjustments to synaptic weights of 

the multilayer perceptron are performed after the 

presentation of all the N training samples.

 This training process that all the N samples are 

represented one time is called one epoch of training.

 So the cost function for batch learning is defined by the 

average error energy Eav.

 Advantages

 Accurate estimation the gradient vector

 Parallelization

 Disadvantage

 More storage requirements
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BP Learning Details

 At the nth iteration, we can training the network 

by minimizing E(n), and the output of the jth

neuron is given by:

 BP-4

 BP-5
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BP Learning Details

 We define the gradient as:

 According to BP-4

 We further denote 
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BP Learning Details

 Then the change of wji(n) is :

  is the learning rate, thus the weights can be updated 

as:

)()()( nynnw ijji  

)()()()()()1( nynnwnwnwnw ijjijijiji 
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BP Learning Details

 When neuron j is a neuron in the output layer, 

according to BP-1, BP-1, we have:
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BP Learning Details

 When neuron j is in the hidden layer, there is no 

expected value for us to use. Thus, we use the error 

propagated from the neuron connected to it:



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 94

BP Learning Details

 j and k connected with wkj

 If k is in the output layer,

 Then for neuron j, 
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BP Learning Details

 The previous equations show that we need a 

function (.) differentiable, e.g., the sigmoid 

function:
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BP Learning Details

 Signal-flow graph of a part of the adjoint system 

pertaining to back-propagation of error signals.



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 97

Two Passes of Computation

 Forward pass

 Backward pass

 This pass stats at the output layer by passing the 

error signals leftward through the network, layer by 

layer, and recursively computing delta(local gradient) 

for each neuron.
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Signal-flow graphical summary

 Top part of the graph: forward pass. 

Bottom part of the graph: backward pass.
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Learning Rate

 The learning rate should not be too large or too 

small.

 In order to avoid the danger of instability, a 

momentum term can be introduced into the 

equation.

)()()1()( nynnwnw ijjiji  
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Learning Rate

 If we rewrite the equation as a time series with 

index t, the equation becomes:
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For the time series to be convergent, 0<=|alpha|<1

The sign of the partial derivative can affect the speed 

and stability. 
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Stopping Criteria

 In general, the BP cannot be shown to converge, 

and there are no well-defined criteria for 

stopping its operation.

 However, there are some reasonable criteria 

that can be used to terminate the weight 

adjustments, e.g.

 When the Euclidean norm of the gradient vector 

reaches a sufficiently small gradient threshold.

 When the average squared error per epoch is 

sufficiently small. Usually, it is in the range of 0.1 to 1 

percent per epoch, or as small as 0.01 percent.
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XOR Problem Revisiting
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XOR Problem Revisiting

 The weights are initialized as:

 =0.5

 When the sample (1,1) is given to the network:
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XOR Problem Revisiting

 We have:
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XOR Problem Revisiting

 Then the weights are updated as:

 Finally, we can have:
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XOR Problem Revisiting

 We can revisit the problem from the view of 

space transformation, the points in the sample 

space are transformed into a new space, i.e., 

(0,0), (1,1), (1,0) and (0,1)are mapped to 

(0.768,0.427), (0.964,0.819), (0.892,0.629) and 

(0.915,0.665).
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XOR Problem Revisiting

4997.0)427.0,768.0()0,0( layer outputlayer hidden    z

4999.0)819.0,964.0()1,1( layeroutput layerhidden    z

5025.0)629.0,892.0()1,0( layeroutput layerhidden    z

5020.0)665.0,915.0()0,1( layeroutput layerhidden    z
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Other Issues

 Heuristics for BP learning

 Stochastic versus batch update

 Maximizing information content

 Activation function

 Target values

 Normalizing the inputs

 Initialization

 Learning from hints

 Learning rates.
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Stochastic versus batch update

 The stochastic mode (pattern-by-pattern) is 

computationally faster than batch mode.

 Especially, when the data is large and redundant, 

it will much better to use stochastic than to use 

batch.
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Maximizing information content

 Every training example should be chosen on the 

basis that its information content is the largest 

possible for the task at hand. 

 How to choose? 

 Use an sample that results in the largest training error.

 Use an example that radically different from all those 

previous used.
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Activation function

 Graph of the hyperbolic tangent function φ(v) =α

tanh(bv) for α 1.7159 and b = 2/3.The 

recommended target values are +1 and –1.
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Target values

 The target values should be within the range of 

the sigmoid activation function.

 Otherwise, the BP algorithm tends to drive the 

free parameters of the network to infinity, and 

thereby slow down the learning process by 

driving the hidden neurons into saturation.
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Normalizing the inputs

 Each input variable should be preprocessed

 Mean removal

 Decorrelation

 Covariance equalization

 Normalization methods

 Min-Max

 Z-score standardization
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Initialization

 Too large

 The neurons in the network will be driven into 

saturation

 Too small

 The BP algorithm will operate on a very flat area 

around the origin of the error surface.
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Learning from hints

 We can make use of some information that we 

have about the activation function or data.
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Learning rates

 The learning rate should be assigned a smaller 

value in the last layers than in the front layers.

 Neurons with many inputs should have a smaller 

learning rate than neurons with few inputs.

 Annealing method can be applied.
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Stopping Criteria

 In general, the BP cannot be shown to converge, 

and there are no well-defined criteria for 

stopping its operation.

 However, there are some reasonable criteria 

that can be used to terminate the weight 

adjustments, e.g.

 When the Euclidean norm of the gradient vector 

reaches a sufficiently small gradient threshold.

 When the average squared error per epoch is 

sufficiently small. Usually, it is in the range of 0.1 to 1 

percent per epoch, or as small as 0.01 percent.
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Some problems

 The layers

 The number of hidden layer neurons

 Kolmogorov theorem: the neurons in hidden layers 

can be: s=2m+1 (m is the number of neurons in input 

layer)

 Demos
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BP Summary

 Strengths of BP learning
 Great representation power
 Wide practical applicability
 Easy to implement
 Good generalization power

 Problems of BP learning
 Learning often takes a long time to converge
 The net is essentially a black box? 
 Gradient descent approach only guarantees a local 

minimum error
 Not every function that is representable can be 

learned
 Generalization is not guaranteed even if the error is 

reduced to zero
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BP Summary

 No well-founded way to assess the quality of BP 
learning

 Network paralysis may occur (learning is stopped)
 Selection of learning parameters can only be done by 

trial-and-error
 BP learning is non-incremental (to include new 

training samples, the network must be re-trained with 
all old and new samples)



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 121

Radial-Basis Functions

 A radial basis 

function (RBF) is a 

real-valued function 

whose value depends 

only on the distance 

from the origin, so that 

; or alternatively on the 

distance from some 

other point c, called a 

center
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Interpolation problem

 In its strict sense, the problem can be stated as:
 Given a set of N different points {xi∈Rm0} and a 

corresponding set of N real numbers di, find a function 
F that satisfies the interpolation condition: F(xi)=di.

 The Radial-Basis Function (RBF) technique 
consists of choosing a function F that has the 
form: 
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How to get the solution?
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Radial-Basis Function

where
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Micchelli theorem(1986) is proved that if the equation is 
as the above, then the matrix is nonsingular.
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Radial-Basis Functions

 Multiquadrics

 Inverse multiquadrics

 Gaussian functions
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RBF Networks

 Structure of an RBF network, based on 

interpolation theory.
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RBF Networks

 The network has three layers:

 Input layer, which consist of m0 source nodes.

 Hidden layer, consist of the same number of 

computation units as the size of the training samples, 

namely, N.

 Output layer, there is no restriction on the size of the 

output layer.
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Modifications to RBF Networks
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How to get the k centers

 This can be computed by un-supervised learning.

 K-means

 SOM

 Clustering algorithm can be used here, e.g. we use 

k-means

 
 


K

ij jiC

ji ux
)(

2||||min



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 129

Self-Organization Maps

 Teuvo Kohonen (1982, 1984)

 In biological systems
Cells tuned to similar orientations tend to be physically 

located in proximity with one another 

 Microelectrode studies with cats

 So, SOM is motivated by a distinct feature of the 
human brain:
The brain is organized in many places in such a way 

that different sensory inputs are represented by 
topologically ordered computation maps.
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Self-Organization Maps

Orientation tuning over the surface forms a kind 
of map with similar tunings being found close to 
each other
Topographic feature map

Train a network using competitive learning to create 
feature maps automatically 
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SOM Clustering

 Self-organizing  map (SOM)
 An unsupervised artificial neural network

 Mapping high-dimensional data into a one or two-
dimensional representation space

 Similar data may be found in neighboring regions

 Disadvantages
 Fixed size in terms of the number of units and their 

particular arrangement

 Hierarchical relations between the input data are not 
mirrored in a straight-forward manner
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SOM Structure

 Two-dimensional lattice of neurons, illustrated 

for a three-dimensional input and four-by-four 

dimensional output (all shown in blue).
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SOM Structure
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Features

 Kohonen’s algorithm creates a vector quantizer 

by adjusting weight from common input nodes to 

M output nodes

 Continuous valued input vectors are presented 

without specifying the desired output

 After the learning, weight will be organized such 

that topologically close nodes are sensitive to 

inputs that are physically similar

 Output nodes will be ordered in a natural 

manner
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Initial setup of SOM

 Consists a set of units i in a two-dimension grid

 Each unit i is assigned a weight vector mi as the 
same dimension as the input data

 The initial weight vector is assigned random 
values
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Essential processes in SOM

 Competition process

 Find the best match of the input vector x with the 

synaptic-weight vectors.

 Cooperation process

 Decide the topological neighborhood centered on the 

winning neuron, and make it decay smoothly with 

lateral distance.

 Synaptic adaptation

 The weights of corresponding neurons are updated in 

relation to the input vector. 
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Competition process

 Winner Selection 

 Initially, pick up a random input vector x(t)

 Compute the unit c with the highest activity level (the 

winner c(t)) by Euclidean distance formula
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Neuron i is called the best-matching, or 

winning neuron for the input vector
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Cooperative process

 A neuron that is firing tends to excite the 

neurons in its immediate neighborhood more 

that those farther away from it.

 Let hji denote the topological neighborhood 

function centered on winning neuron i and 

encompassing a set of excited neurons.

 Let dij denote the lateral distance between the 

winning neuron i and excited neuron j. 
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Cooperative process

 hji and dji should satisfy two distinct requirements:

 hij is symmetric about the maximum point defiend by 

dij = 0; In other words, it attains its maximum value at 

the winning neuron i for which the distance dij is zero.

 The amplitude of the topological neighborhood hij

decreases monotonically with increasing lateral 

distance dij, decaying to zero for dij ->∞, this is 

necessary condition for convergence.
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Cooperative process

 A good choice of hij that satisfies these 

requirements is the Gaussian function:
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Cooperative process

 Another unique feature of the SOM algorithm is 

that the size of the topological neighborhood is 

permitted to shrink with time. 

 This requirement can be satisfied by making the 

width sigma of the topological neighborhood 

function hji decrease with time. A popular choice 

for the dependence of sigma on discrete time n 

is the exponential decay:
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Cooperative process

 Correspondingly, the topological neighborhood 

function assumes a time-varying form of its own, 

as follows:
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Adaptive process

 In the stage, the synaptic-weight is required to 

change in relation to the input vector. 

)()()1( nwnwnw jjj 

Where the last term can be calculated using the 

following equation:
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The learning rate η(n) should also be time 

varying.
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Weight update
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Weight update

 Illustration of the relationship between feature 

map Փ and weight vector wi of winning neuron i

I
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Learning Process (Adaptation)
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SOM Learning Summary

 1. initialization

 Choose random values for weights

 Or choose input vectors randomly to initialize them 

 2.Sampling

 Draw a sample from input space

 3. similarity matching

 Find the best-matching neuron

 4.Updating

 5.Continuation
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Neighborhoods
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Applications

 Optimization problems

 Clustering problems

 Pattern recognition

 Others
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Applications

A grouping according to similarity has 

emerged

Animal names and their attributes

birds

peaceful

hunters

is

has

likes

to

 Dove Hen Duck Goose Owl Hawk Eagle Fox Dog Wolf Cat Tiger Lion Horse Zebra Cow 

Small 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 
Medium 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 

Big 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 

2 legs 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
4 legs 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 
Hair 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

Hooves 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
Mane 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 

Feathers 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

Hunt 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0 
Run 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 
Fly 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 

Swim 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
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Application to PR

 Features

字母

特征向量

斜线 上横线 中横线 下横线 竖线 上半圆弧 下半圆弧 左半圆弧 右半圆弧

A '\002' ‘\0’ ‘\001’ ‘\0’ ‘\0’ ‘\0’ ‘\0’ ‘\0’ ‘\0’

B ‘\0’ ‘\0’ ‘\0’ ‘\0’ ‘\001’ ‘\0’ ‘\0’ ‘\0’ ‘\002’

C ‘\0’ ‘\0’ ‘\0’ ‘\0’ ‘\0’ ‘\0’ ‘\0’ ‘\001’ ‘\0’

D ‘\0’ ‘\0’ ‘\0’ ‘\0’ ‘\001’ ‘\0’ ‘\0’ ‘\0’ ‘\001’

E ‘\0’ ‘\001’ ‘\001’ ‘\001’ ‘\001’ ‘\0’ ‘\0’ ‘\0’ ‘\0’

F ‘\0’ ‘\001’ ‘\001’ ‘\0’ ‘\001’ ‘\0’ ‘\0’ ‘\0’ ‘\0’

H ‘\0’ ‘\001’ ‘\0’ ‘\0’ ‘\002’
‘\0’

‘\0’ ‘\0’ ‘\0’

K ‘\002’ ‘\0’ ‘\0’ ‘\0’ ‘\001’ ‘\0’ ‘\0’ ‘\0’ ‘\0’

P ‘\0’ ‘\0’ ‘\0’ ‘\0’ ‘\001’ ‘\0 ‘\0’ ‘\0’ ‘\01’

T ‘\0’ ‘\001’ ‘\0’ ‘\0’ ‘\001’ ‘\0’ ‘\0’ ‘\0’ ‘\0’

U ‘\0’ ‘\0’ ‘\0’ ‘\0’ ‘\002’ ‘\001’ ‘\0’ ‘\0’ ‘\0’
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Applications

 Demos
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Any question?


