M L
 D M
 $\left[\begin{array}{c}\text { Machine Learning } \\ \& \text { Data Mining }\end{array}\right]$

Chapter 7
Decision Trees

Top 10 Algorithms in DM

- \#1: C4.5
- \#2: K-Means

■ \#3: SVM
■ \#4: Apriori

- \#5: EM

■ \#6: PageRank
■ \#7: AdaBoost
■ \#7: kNN

- \#7: Naive Bayes

■ \#10: CART

Content

- Introduction
- CLS
- ID3
- C4.5
- CART

Inductive Learning

The general conclusion should apply to unseen examples.

Decision Tree

\square A decision tree is a tree in which

- each branch node represents a choice between a number of alternatives
- each leaf node represents a classification or decision

Example I

Example II

Decision Rules

Decision Tree Learning

- We wish to be able to induce a decision tree from a set of data about instances together with the decisions or classifications for those instances.
- Learning Algorithms:
- CLS (Concept Learning System)
- ID3 \rightarrow C4 \rightarrow C4.5 \rightarrow C5

Appropriate Problems for Decision Tree Learning

- Instances are represented by attribute-value pairs.
- The target function has discrete output values.
- Disjunctive descriptions may be required.
- The training data may contain errors.
- The training data may contain missing attribute values.

CLS Algorithm

1. $T \leftarrow$ the whole training set. Create a T node.
2. If all examples in T are positive, create a ' P ' node with T as its parent and stop.
3. If all examples in T are negative, create an ' N ' node with T as its parent and stop.
4. Select an attribute X with values $v_{1}, v_{2}, \ldots, v_{N}$ and partition T into subsets $T_{1}, T_{2}, \ldots, T_{N}$ according their values on X. Create N nodes $T_{i}(i=1, \ldots, N)$ with T as their parent and $X=v_{i}$ as the label of the branch from T to T_{i}.
5. For each T_{i} do: $T \leftarrow T_{i}$ and goto step 2 .

Example

(tall, blond, blue) w
(short, silver, blue) w (short, black, blue) w (tall, blond, brown) w (tall, silver, blue) w (short, blond, blue) w
(short, black, brown) e (tall, silver, black) e (short, black, brown) e (tall, black, brown) e (tall, black, black) e (short, blond, black) e

Example

Example

- Iterative Dichotomizer (version) 3 developed by Ross Quinlan

■ Select decision sequence of the tree based on information gain.

- Entropy (Binary Classification)

$$
\operatorname{Entropy}(S)=-p_{1} \log _{2} p_{1}-p_{2} \log _{2} p_{2}
$$

$$
\begin{aligned}
& p_{1}=P\left(s \in C_{1}\right) \\
& p_{2}=P\left(s \in C_{2}\right)
\end{aligned}
$$

- Entropy (Binary Classification)

$$
\text { Entropy }(S)=-p_{1} \log _{2} p_{1}-p_{2} \log _{2} p_{2}
$$

- Entropy (Binary Classification)

$$
\text { Entropy }(S)=-p_{1} \log _{2} p_{1}-p_{2} \log _{2} p_{2}
$$

- Entropy (Binary Classification)

$$
\text { Entropy }(S)=-p_{1} \log _{2} p_{1}-p_{2} \log _{2} p_{2}
$$

$$
\begin{aligned}
& p_{+}=14 / 15 \\
& p_{-}=1 / 15
\end{aligned}
$$

Entropy $=0.353359$

Information Gain

Attribute $A=\left\{v_{1}, \mathrm{~K}, v_{n}\right\}$

$\operatorname{Gain}(S, A)=\operatorname{Entropy}(S)-\sum_{v \in A} \frac{\left|S_{v}\right|}{|S|} \operatorname{Entropy}\left(S_{v}\right)$

Information Gain

$$
\operatorname{Gain}(S, A)=\operatorname{Entropy}(S)-\sum_{v \in A} \frac{\left|S_{v}\right|}{|S|} \operatorname{Entropy}\left(S_{v}\right)
$$

$\operatorname{Gain}(S$, Height $)=0$

Information Gain

$$
\operatorname{Gain}(S, A)=\operatorname{Entropy}(S)-\sum_{v \in A} \frac{\left|S_{v}\right|}{|S|} \operatorname{Entropy}\left(S_{v}\right)
$$

Gain $(S$, Hair $)=0.199197$

Information Gain

$$
\operatorname{Gain}(S, A)=\operatorname{Entropy}(S)-\sum_{v \in A} \frac{\left|S_{v}\right|}{|S|} \operatorname{Entropy}\left(S_{v}\right)
$$

Information Gain

(tall, blond, blue) w	(short, black, brown) e
(short, silver, blue) w	(tall, silver, black) e
(short, black, blue) w	(short, black, brown) e
(tall, blond, brown) w	(tall, black, brown) e
(tall, silver, blue) w	(tall, black, black) e
(short, blond, blue) w	(short, blond, black) e

Gain $(S$, Hair $)=0.199197$

Gain $(S$, Height $)=0$

$\operatorname{Gain}(S, E y e)=0.829574$

ID3 (modify of CLS)

$1 T \leftarrow$ the whole training set. Create a T node.
2 If all examples in T are positive, create a ' P ' node with T as its parent and stop.
3 If all examples in T are negative, create a ' N ' node with T as its parent and stop.
4 Select an attribute X with values $v_{1}, v_{2}, \ldots, v_{N}$ and partition T into subsets $T_{1}, T_{2}, \ldots, T_{N}$ according their values on X. Create N nodes $T_{i}(i=1, \ldots, N)$ with T as their parent and $X=v_{i}$ as the label of the branch from T to T_{i}.
5 For each T_{i} do: $T \leftarrow T_{i}$ and goto step 2.

ID3 (modify of CLS)

$1 T \leftarrow$ the whole training set. Create a T node.
2 If all examples with T as it
3 If all examplos...

By maximizing the

information gain. with T as its parent and stop.
4 Select an attribute X with values $v_{1}, v_{2}, \ldots, v_{N}$ and partition T into subseqs $T_{1}, T_{2}, \ldots, T_{N}$ according their values on X. Create N nodes $T_{i}(i=1, \ldots, N)$ with T as their parent and $X=v_{i}$ as the label of the branch from T to T_{i}.
5 For each T_{i} do: $T \leftarrow T_{i}$ and goto step 2.

Example

Windowing

Windowing

- ID3 can deal with very large data sets by performing induction on subsets or windows onto the data.

1. Select a random subset of the whole set of training instances.
2. Use the induction algorithm to form a rule to explain the current window.
3. Scan through all of the training instances looking for exceptions to the rule.
4. Add the exceptions to the window

- Repeat steps 2 to 4 until there are no exceptions left.

Inductive Biases

- Shorter trees are preferred.
- Attributes with higher information gain are selected first in tree construction.
- Greedy Search
- Preference bias (relative to restriction bias as in the VS approach)
- Why prefer short hypotheses?
- Occam's razor Generalization

Overfitting to the Training Data

- The training error is statistically smaller than the test error for a given hypothesis.
- Solutions:
- Early stopping
- Validation sets
- Statistical criterion for continuation (of the tree)
- Post-pruning
- Minimal description length cost-function $=$ error + complexity

Pruning Techniques

- Reduced error pruning (of nodes)
-Used by ID3
- Rule post-pruning
- Used by C4.5

Reduced Error Pruning

■ Use a separated validation set

- Tree accuracy:
- percentage of correct classifications on validation set
- Method:

Do until further pruning is harmful

- Evaluate the impact on validation set of pruning each possible node.
- Greedily remove the one that most improves the validation set accuracy.

Reduced Error Pruning

C4.5:An Extension of ID3

■ Some additional features of C4.5 are:

- Incorporation of numerical (continuous) attributes.
- Nominal (discrete) values of a single attribute may be grouped together, to support more complex tests.
- Post-pruning after induction of trees, e.g. based on test sets, in order to increase accuracy.
- C4.5 can deal with incomplete information (missing attribute values).
- Use gain ratio instead of information gain

Rule Post-Pruning

- Fully induce the decision tree from the training set (allowing overfitting)
- Convert the learned tree to rules
- one rule for each path from the root node to a leaf node
- Prune each rule by removing any preconditions that result in improving its estimated accuracy
- Sort the pruned rules by their estimated accuracy, and consider them in this sequence when classifying subsequent instances

Converting to Rules

IF $\quad($ Outlook $=$ Sunny $) \wedge($ Humidity $=$ High $)$
THEN PlayTennis $=$ No
IF $\quad($ Outlook $=$ Sunny $) \wedge($ Humidity $=$ Normal $)$
THEN PlayTennis $=$ Yes

handling numeric attributes

- Continuous attribute \rightarrow discrete attribute
- Example
- Original attribute: Temperature $=82.5$
- New attribute: (temperature > 72.3) = t, f

Temperature: $\begin{array}{lllllll}40 & 48 & 60 & 72 & 80 & 90\end{array}$
PlayTennis: No No Yes Yes Yes No

Example:

> How to choose split points?

handling numeric attributes

- Choosing split points for a continuous attribute
- Sort the examples according to the values of the continuous attribute.
- Identify adjacent examples that differ in their target labels and attribute values \rightarrow a set of candidate split points
- Calculate the gain for each split point and choose the one with the highest gain.

Attributes with Many Values

- Information Gain - biases to attribute with many values
- e.g., date
- One approach - use GainRatio instead of information gain.

$$
\begin{gathered}
\operatorname{GainRatio}(S, A)=\frac{\operatorname{Gain}(S, A)}{\operatorname{SplitInformation}(S, A)} \\
\operatorname{SplitInformation}(S, A)=-\sum_{i=1}^{c} \frac{\left|S_{i}\right|}{|S|} \log \frac{\left|S_{i}\right|}{|S|}
\end{gathered}
$$

Associate Attributes of Cost

- The availability of attributes may vary significantly in costs, e.g., medical diagnosis.
- Example: Medical disease classification
- Temperature
- BiopsyResult
- Pulse
- BloodTestResult High

How to learn a consistent tree with Low expected cost?

Associate Attributes of Cost

- Tan and Schlimmer (1990)

$$
\frac{\operatorname{Gain}^{2}(S, A)}{\operatorname{Cost}(S, A)}
$$

■ Nunez (1988)

$$
\frac{2^{\operatorname{Gain}(S, A)}-1}{(\operatorname{Cost}(A)+1)^{w}}
$$

$w \in[0,1]$ determines the importance of cost.

Unknown Attribute Values

$$
S=\left\{\begin{array}{l}
(\mathrm{L}, x, \mathrm{~L})+ \\
(\mathrm{L}, x, \mathrm{~L})- \\
(\mathrm{L}, x, \mathrm{~L})+ \\
(\mathrm{L}, y, \mathrm{~L})- \\
(\mathrm{L}, y, \mathrm{~L})+ \\
(\mathrm{L}, y, \mathrm{~L})+ \\
(\mathrm{L}, y, \mathrm{~L})+ \\
(\mathrm{L}, z, \mathrm{~L})+ \\
(\mathrm{L}, z, \mathrm{~L})+ \\
(\mathrm{L}, z, \mathrm{~L})- \\
(\mathrm{L}, ?, \mathrm{~L})- \\
(\mathrm{L}, ?, \mathrm{~L})+
\end{array}\right\}
$$

Attribute $A=\{x, y, z\}$

$$
\operatorname{Gain}(S, A)=?
$$

Possible Approaches:

- Assign most common value of A to the unknown one.
- Assign most common value of A with the same target value to the unknown one.
- Assign probability to each possible value.
- Classification And Regression Trees
- Generates binary decision tree: only 2 children created at each node (whereas ID3 creates a child for each subcategory).
- Each split makes the subset more pure than that before splitting.
- In ID3, Entropy is used to measure the splitting; in CART, impurity is used.

CART

- Node impurity is 0 when all patterns at the node are of the same category; it becomes maximum when all the classes at the node are equally likely.
- Entropy Impurity

$$
i(N)=-\sum_{j} P\left(\omega_{j}\right) \log _{2} P\left(\omega_{j}\right)
$$

- Gini Impurity

$$
i(N)=\sum_{i \neq j} P\left(\omega_{i}\right) P\left(\omega_{j}\right)
$$

- Misclassification impurity

$$
i(N)=1-\max _{j} P\left(\omega_{j}\right)
$$

MIMA Groun

[Thank You!]

Any Question?

