MIMA Group

M L D M Chapter 9 Support Vector Machines

Learning Machines

MIMA

• A machine to learn the mapping

$$\mathbf{x}_i \mathbf{a} \quad y_i$$

Defined as

X a
$$f(\mathbf{X}, \mathbf{0})$$

Learning by adjusting
this parameter?

Generalization vs. Learning

MIMA

- How a machine learns?
 - Adjusting the parameters so as to partition the pattern (feature) space for classification.
 - How to adjust?

Minimize the empirical risk (traditional approaches).

- What the machine learned?
 - Memorize the patterns it sees? or
 - Memorize the rules it finds for different classes?
 - What does the machine actually learn if it minimizes empirical risk only?

Risks

MIMA

Expected Risk (test error)

$$R(\boldsymbol{\alpha}) = \int \frac{1}{2} |y - f(\mathbf{x}, \boldsymbol{\alpha})| dP(\mathbf{x}, y)$$

Empirical Risk (training error)

$$R_{emp}(\boldsymbol{\alpha}) = \frac{1}{2l} \sum_{i=1}^{l} |y_i - f(\mathbf{x}_i, \boldsymbol{\alpha})|$$
$$R(\boldsymbol{\alpha}) \approx R_{emp}(\boldsymbol{\alpha})?$$

More on Empirical Risk

- How can make the empirical risk arbitrarily small?
 - To let the machine have very large memorization capacity.
- Does a machine with small empirical risk also get small expected risk?
- How to avoid the machine to strain to memorize training patterns, instead of doing generalization, only?
- How to deal with the straining-memorization capacity of a machine?
- What the new criterion should be?

Structure Risk Minimization

Goal: Learn both the right 'structure' and right `rules' for classification.

Right Structure:

E.g., Right amount and right forms of components or parameters are to participate in a learning machine.

Right Rules:

The empirical risk will also be reduced if right rules are learned.

MIMA

Total Risk=Empirical Risk+Risk due to theTotal Risk=Empirical Risk+structure ofthe learning machine

7

The VC Dimension

- Consider a set of function $f(\mathbf{x}, \alpha) \in \{-1, 1\}$.
- A given set of *l* points can be labeled in 2^l ways.
- If a member of the set {f (α)} can be found which correctly assigns the labels for all labeling, then the set of points is *shattered* by that set of functions.
- The VC dimension of {f (α)} is the maximum number of training points that can be shattered by {f (α)}.

VC: Vapnik Chervonenkis

The VC Dimension for Oriented Lines in R²

VC dimension = 3

More on VC Dimension

- In general, the VC dimension of a set of oriented hyperplanes in Rⁿ is n+1.
- VC dimension is a measure of memorization capability.
- VC dimension is *not* directly related to number of parameters. Vapnik (1995) has an example with 1 parameter and infinite VC dimension.

Bound on Expected Risk

Expected Risk
$$R(\boldsymbol{\alpha}) = \int \frac{1}{2} |y - f(\mathbf{x}, \boldsymbol{\alpha})| dP(\mathbf{x}, y)$$

Empirical Risk $R_{emp}(\boldsymbol{\alpha}) = \frac{1}{2l} \sum_{i=1}^{l} |y_i - f(\mathbf{x}_i, \boldsymbol{\alpha})|$

$$P\left(R(\alpha) \leq R_{emp}(\alpha) + \sqrt{\frac{h(\log(2l/h) + 1) - \log(\eta/4)}{l}}\right) = 1 - \eta$$

VC Confidence
h is the VC dimension; I is the number of samples

Xin-Shun Xu @ SDU

Bound on Expected Risk

MIMA

Consider small η (e.g., $\eta \le 0.05$).

$$R(\alpha) \le R_{emp}(\alpha) + \sqrt{\frac{h(\log(2l/h) + 1) - \log(\eta/4)}{l}}$$

$$P\left(R(\alpha) \le R_{emp}(\alpha) + \sqrt{\frac{h(\log(2l/h) + 1) - \log(\eta/4)}{l}}\right) = 1 - \eta$$

VC Confidence

Bound on Expected Risk

MIMA

Consider small η (e.g., $\eta \le 0.05$).

Traditional approaches minimize empirical risk only

VC Confidence

MIMA

$$R(\alpha) \le R_{emp}(\alpha) + \sqrt{\frac{h(\log(2l/h) + 1) - \log(\eta/4)}{l}}$$

Structure Risk Minimization

MIMA

$h_1 < h_2 < h_3 < h_4$

Nested subset of functions with different VC dimensions.

Structure Risk Minimization

underfitting bestmodel overfitting error bound on test error ****************** capacity term training error h structure H2 H3 H.

MIMA

Linear SVM

MIMA

The linear separability

Linearly separable

Not linearly separable

Linear SVM

MIMA

The linear separability

How would you classify these points using a linear discriminant function in order to minimize the error rate?

Linearly separable

Maximum Margin Classifier

MIMA

$y_i(\mathbf{w}\mathbf{x}_i+b)-1 \ge 0 \quad \forall i$

The linear discriminant function (classifier) with the maximum margin is the best

Margin is defined as the width that the boundary could be increased by before hitting a data point

□Why is it the best?

Intuitively robust to outliners and thus strong generalization ability

Relation Between VC Dimension and Margin

- What is the relation btw. the margin width and VC dimension?
- Let x belong to sphere of radius R. The set of margin separating hyperplanes has VC dimension h bounded by:

$$h \leq \min\left(\left(\frac{R}{\gamma}\right)^2, d\right) + 1$$

d is the dimension of x,

What does this mean?

The linear separability

Linearly Separable

- $\implies \exists \mathbf{w}, b \text{ such that}$
 - $\mathbf{w}\mathbf{x}_i + b \ge +1 \text{ for } y_i = +1$
 - $\mathbf{w}\mathbf{x}_i + b \le -1 \text{ for } y_i = -1$

 $= y_i(\mathbf{w}\mathbf{x}_i + b) - 1 \ge 0 \quad \forall i$

Margin Width

$y_i(\mathbf{w}\mathbf{x}_i+b)-1\geq 0 \quad \forall i$

Building SVM

$$\begin{aligned} \text{Minimize} \quad \frac{1}{2} \| \mathbf{w} \|^2 \\ \text{Subject to} \quad y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \ge 0 \quad \forall i \end{aligned}$$

This requires the knowledge about Lagrange Multiplier.

The Method of Lagrange

MIMA

Minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

Subject to $y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \ge 0 \quad \forall i$

The Lagrangian:

$$L(\mathbf{w},b;\Lambda) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^l \lambda_i \left[y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right] \qquad \lambda_i \ge 0$$

Minimize it w.r.t w & b, while *maximize* it w.r.t. Λ .

The Method of Lagrange

MIMA

Why Lagrange?

- The constraints will be replaced by constraints on the Lagrange multipliers, which will be much easier to handle.
- In this reformulation of the problem, the training data will only appear in the form of dot products between vectors.

Minimize it w.r.t w & b, while maximize it w.r.t. Λ .

The Method of Lagrange $L(\mathbf{w},b;\Lambda) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{l} \lambda_i y_i (\mathbf{w}^T \mathbf{x}_i + b) + \sum_{i=1}^{l} \lambda_i$ Minimize $\frac{1}{2} ||\mathbf{w}||^2$ Subject to $y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \ge 0 \quad \forall i$

The Lagrangian:

$$L(\mathbf{w}, b; \mathbf{\Lambda}) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^l \lambda_i \Big[y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \Big] \qquad \lambda_i \ge 0$$
$$= \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^l \lambda_i y_i(\mathbf{w}^T \mathbf{x}_i + b) + \sum_{i=1}^l \lambda_i$$

Duality MIMA $L(\mathbf{w},b;\mathbf{\Lambda}) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{l} \lambda_i y_i (\mathbf{w}^T \mathbf{x}_i + b) + \sum_{i=1}^{l} \lambda_i$ Minimize $\frac{1}{2} \|\mathbf{w}\|^2$ $y_i(\mathbf{w}^T\mathbf{x}_i+b)-1\geq 0$ $\forall i$ Subject to $L(\mathbf{w}^*, b^*; \Lambda)$ Maximize Subject to $\nabla_{\mathbf{w}\,b} L(\mathbf{w},b;\Lambda) = \mathbf{0}$

 $\lambda_i \geq 0, \quad i=1, K, l$

Duality

MIMA

$$L(\mathbf{w},b;\Lambda) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^l \lambda_i y_i (\mathbf{w}^T \mathbf{x}_i + b) + \sum_{i=1}^l \lambda_i$$
$$\nabla_{\mathbf{w}} L(\mathbf{w},b;\Lambda) = \mathbf{w} - \sum_{i=1}^l \lambda_i y_i \mathbf{x}_i = \mathbf{0} \qquad \qquad \mathbf{w}^* = \sum_{i=1}^l \lambda_i y_i \mathbf{x}_i$$
$$\nabla_b L(\mathbf{w},b;\Lambda) = \sum_{i=1}^l \lambda_i y_i = \mathbf{0} \qquad \qquad \qquad \sum_{i=1}^l \lambda_i y_i = \mathbf{0}$$

Maximize $L(\mathbf{w}^*, b^*; \Lambda)$ Subject to $\nabla_{\mathbf{w}, b} L(\mathbf{w}, b; \Lambda) = \mathbf{0}$ $\lambda_i \ge 0, \quad i = 1, K, l$

Duality MIMA $L(\mathbf{w},b;\Lambda) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{i} \lambda_i y_i (\mathbf{w}^T \mathbf{x}_i + b) + \sum_{i=1}^{i} \lambda_i$ $\nabla_{\mathbf{w}} L(\mathbf{w}, b; \Lambda) = \mathbf{w} - \sum_{i=1}^{l} \lambda_{i} y_{i} \mathbf{x}_{i} = \mathbf{0} \quad \mathbf{w}^{*} = \sum_{i=1}^{l} \lambda_{i} y_{i} \mathbf{x}_{i}$ $L(\mathbf{w}^*, b^*; \mathbf{\Lambda}) = \frac{1}{2} \left(\sum_{i=1}^l \lambda_i y_i \mathbf{x}_i \right)^l \sum_{i=1}^l \lambda_i y_i \mathbf{x}_i - \left(\sum_{i=1}^l \lambda_i y_i \mathbf{x}_i \right)^l \sum_{i=1}^l \lambda_i y_i \mathbf{x}_i - b \sum_{i=1}^l \lambda_i y_i + \sum_{i=1}^l \lambda_i y_i \mathbf{x}_i \right)^l$ $=\sum_{i=1}^{l}\lambda_{i}-\frac{1}{2}\left(\sum_{i=1}^{l}\lambda_{i}y_{i}\mathbf{x}_{i}\right)^{T}\sum_{i=1}^{l}\lambda_{i}y_{i}\mathbf{x}_{i}$ $=\sum_{i=1}^{l} \lambda_{i} - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \lambda_{i} \lambda_{j} y_{i} y_{j} < \mathbf{x}_{i}, \mathbf{x}_{j} >$ Maximize

Duality MIMA $L(\mathbf{w},b;\Lambda) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{i} \lambda_i y_i (\mathbf{w}^T \mathbf{x}_i + b) + \sum_{i=1}^{i} \lambda_i$ $\nabla_{\mathbf{w}} L(\mathbf{w}, b; \mathbf{\Lambda}) = \mathbf{w} - \sum_{i=1}^{l} \lambda_{i} y_{i} \mathbf{x}_{i} = \mathbf{0} \quad \mathbf{w}^{*} = \sum_{i=1}^{l} \lambda_{i} y_{i} \mathbf{x}_{i}$ $L(\mathbf{w}^*, b^*; \mathbf{\Lambda}) = \frac{1}{2} \left(\sum_{i=1}^l \lambda_i y_i \mathbf{x}_i \right)^l \sum_{i=1}^l \lambda_i y_i \mathbf{x}_i - \left(\sum_{i=1}^l \lambda_i y_i \mathbf{x}_i \right)^l \sum_{i=1}^l \lambda_i y_i \mathbf{x}_i - b \sum_{i=1}^l \lambda_i y_i + \sum_{i=1}^l \lambda_i y_i \mathbf{x}_i \right)^l$ $=\sum_{i=1}^{l}\lambda_{i}-\frac{1}{2}\left(\sum_{i=1}^{l}\lambda_{i}y_{i}\mathbf{x}_{i}\right)^{T}\sum_{i=1}^{l}\lambda_{i}y_{i}\mathbf{x}_{i} \qquad F(\Lambda)=\Lambda\cdot\mathbf{1}-\frac{1}{2}\Lambda^{T}D\Lambda$ $=\sum_{i=1}^{l} \lambda_{i} - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \lambda_{i} \lambda_{j} y_{i} y_{j} < \mathbf{x}_{i}, \mathbf{x}_{j} >$ Maximize

Duality

MIMA

Minimize
$$\frac{1}{2} || \mathbf{w} ||^2$$
The PrimalSubject to $y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \ge 0 \quad \forall i$ The DualMaximize $F(\Lambda) = \Lambda \cdot 1 - \frac{1}{2} \Lambda^T D \Lambda$ Subject to $\Lambda^T \mathbf{y} = 0$ $\Lambda \ge \mathbf{0}$

The Solution

MIMA

Quadratic Programming

Find Λ^* by ... $\mathbf{w}^* = \sum_{i=1}^{l} \lambda_i^* y_i \mathbf{x}_i \qquad b^* = ?$ Maximize $F(\Lambda) = \Lambda \cdot \mathbf{1} - \frac{1}{2} \Lambda^T D \Lambda$ The Dual Subject to $\Lambda^T \mathbf{y} = \mathbf{0}$ $\Lambda \geq 0$

The Solution

MIMA

The Karush-Kuhn-Tucker Conditions

$$L(\mathbf{w}, b; \mathbf{\Lambda}) = \frac{1}{2} \| \mathbf{w} \|^{2} - \sum_{i=1}^{l} \lambda_{i} \Big[y_{i} (\mathbf{w}^{T} \mathbf{x}_{i} + b) - 1 \\ \nabla_{\mathbf{w}} L(\mathbf{w}, b; \mathbf{\Lambda}) = \mathbf{w} - \sum_{i=1}^{l} \lambda_{i} y_{i} \mathbf{x}_{i} = \mathbf{0} \\ \nabla_{b} L(\mathbf{w}, b; \mathbf{\Lambda}) = \sum_{i=1}^{l} \lambda_{i} y_{i} = 0 \\ y_{i} (\mathbf{w}^{T} \mathbf{x}_{i} + b) - 1 \ge 0, \quad i = 1, \mathbf{K}, l \\ \lambda_{i} \ge 0, \quad i = 1, \mathbf{K}, l \\ \lambda_{i} \ge 0, \quad i = 1, \mathbf{K}, l \end{bmatrix}$$

Classification

MIMA

$$\mathbf{w}^* = \sum_{i=1}^l \lambda_i^* y_i \mathbf{x}_i$$
$$f(\mathbf{x}) = \operatorname{sgn}\left(\mathbf{w}^{*T} \mathbf{x} + b^*\right)$$
$$= \operatorname{sgn}\left(\sum_{i=1}^l \lambda_i^* y_i < \mathbf{x}_i, \mathbf{x} > b^*\right)$$
$$= \operatorname{sgn}\left(\sum_{\lambda_i^* \neq 0} \lambda_i^* y_i < \mathbf{x}_i, \mathbf{x} > b^*\right)$$

Classification Using Supporters

The weight for the *i*th support vector. Bias $\int (\mathbf{X}) = \operatorname{sgn}\left(\sum_{\lambda_i^* \neq 0} \lambda_i^* y_i < \mathbf{X}_i, \mathbf{X} > + b^*\right)$ The similarity measure btw. input and the *i*th support vector.

Linear SVM

Then non-separable case

Mathematic Formulation

MIMA

For simplicity, we consider k = 1.

 $\begin{array}{ll} \text{Minimize} & \frac{1}{2} \| \mathbf{w} \|^2 + C \left(\sum_i \xi_i \right)^k \\ \text{Subject to} & y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 + \xi_i \geq 0 \quad \forall i \\ & \xi_i \geq 0 \quad \forall i \end{array}$

Mathematic Formulation

MIMA

For simplicity, we consider k = 1.

 $\begin{array}{ll} \text{Minimize} & \frac{1}{2} \| \mathbf{w} \|^2 + C \left(\sum_i \xi_i \right)^k \\ \text{Subject to} & y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 + \xi_i \geq 0 \quad \forall i \\ & \xi_i \geq 0 \quad \forall i \end{array}$

The Lagrangian

$$\begin{array}{ll} \text{Minimize} & \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_i \xi_i \\\\ \text{Subject to} & y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 + \xi_i \geq 0 \quad \forall i \\\\ & \xi_i \geq 0 \quad \forall i \end{array}$$

$$L(\mathbf{w}, b, \Xi; \Lambda, \mathbf{M})$$

= $\frac{1}{2} \| \mathbf{w} \|^{2} + C \sum_{i} \xi_{i} - \sum_{i} \lambda_{i} \Big[y_{i} (\mathbf{w}^{T} \mathbf{x}_{i} + b) - 1 + \xi_{i} \Big] - \sum_{i} \mu_{i} \xi_{i}$
 $\lambda_{i} \ge 0, \mu_{i} \ge 0$

41

Duality

$$\lambda_{i} \ge 0, \mu_{i} \ge 0$$

$$\mu_{i} \ge 0$$

$$\mu_{i} \ge 0$$

$$\lambda_{i} \ge 0, \mu_{i} \ge 0$$

$$\mu_{i} \ge 0$$

$$\mu_{i} \ge 0$$

$$\lambda_{i} \ge 0, \mu_{i} \ge 0$$

$$\mu_{i} \ge 0, \mu_{i} \le 0$$

$$\nabla_{\mathbf{w}} L(\mathbf{w}, b, \Xi; \Lambda, \mathbf{M}) = \mathbf{w} - \sum_{i} \lambda_{i} y_{i} \mathbf{x}_{i} = 0$$

$$\nabla_{b} L(\mathbf{w}, b, \Xi; \Lambda, \mathbf{M}) = \sum_{i} \lambda_{i} y_{i} = 0$$

$$\sum_{i} \lambda_{i} y_{i} = 0$$

$$\nabla_{\xi_{i}} L(\mathbf{w}, b, \Xi; \Lambda, \mathbf{M}) = C - \lambda_{i} - \mu_{i} = 0$$

$$\mu_{i} = C - \lambda_{i}$$

$$0 \le \lambda_{i} \le C$$

$$F(\Lambda, \mathbf{M}) = L(\mathbf{w}^{*}, b^{*}, \Xi^{*}; \Lambda, \mathbf{M}) = \sum_{i} \lambda_{i} - \frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} < \mathbf{x}_{i}, \mathbf{x}_{j} > 0$$
Maximize this

Duality

$$\lambda_{i} \ge 0, \mu_{i} \ge 0$$

$$\mu_{i} \ge 0$$

$$\lambda_{i} \ge 0, \mu_{i} \ge 0$$

$$\mu_{i} \ge 0$$

$$\lambda_{i} \ge 0, \mu_{i} \ge 0$$

$$\lambda_{i} \ge 0 \ge \lambda_{i} \le 0$$

$$\lambda_{i} \le 0 \le \lambda_{i} \le 0$$

$$\lambda_{i} \le 0 \le \lambda_{i} \le 0$$

$$\lambda_{i} \le 0 \le \lambda_{i} \le 0$$

$$\lambda_{i} \ge 0 \le \lambda_{i} \le 0$$

$$\lambda_{i} \ge 0 \le \lambda_{i} \le 0$$

$$\lambda_{i} \ge 0$$

$$\lambda_{$$

Duality

Minimize
$$\frac{1}{2} || \mathbf{w} ||^2 + C \left(\sum_i \xi_i \right)^k$$
Subject to $y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 + \xi_i \ge 0 \quad \forall i$ $\xi_i \ge 0 \quad \forall i$ The DualMaximize $F(\Lambda) = \Lambda \cdot 1 - \frac{1}{2} \Lambda^T D \Lambda$ Subject to $\Lambda^T \mathbf{y} = 0$ $\mathbf{0} \le \Lambda \le C \mathbf{1}$

The Karush-Kuhn-Tucker Conditions

$$L(\mathbf{w}, b, \Xi; \Lambda, M) = \frac{1}{2} \| \mathbf{w} \|^{2} + C \sum_{i} \xi_{i} - \sum_{i} \lambda_{i} \left[y_{i} (\mathbf{w}^{T} \mathbf{x}_{i} + b) - 1 + \xi_{i} \right] - \sum_{i} \mu_{i} \xi_{i}$$

$$\nabla_{\mathbf{w}} L(\mathbf{w}, b, \Xi; \Lambda, M) = \mathbf{w} - \sum_{i} \lambda_{i} y_{i} \mathbf{x}_{i} = \mathbf{0}$$

$$\nabla_{b} L(\mathbf{w}, b, \Xi; \Lambda, M) = \sum_{i} \lambda_{i} y_{i} = 0$$

$$\nabla_{\xi_{i}} L(\mathbf{w}, b, \Xi; \Lambda, M) = C - \lambda_{i} - \mu_{i} = 0$$

$$y_{i} (\mathbf{w}^{T} \mathbf{x}_{i} + b) - 1 + \xi_{i} \ge 0$$

$$\mu_{i} \ge 0$$

$$\lambda_{i} \ge 0$$

$$\lambda_{i} \left[y_{i} (\mathbf{w}^{T} \mathbf{x}_{i} + b) - 1 + \xi_{i} \right] = 0$$

$$\mu_{i} \xi_{i} = 0$$

The Solution

Quadratic Programming

The Solution

The Lagrangian:

 $L(\mathbf{w}, b, \Xi; \Lambda, \mathbf{M})$ = $\frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i - \sum_i \lambda_i [y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 + \xi_i] - \sum_i \mu_i \xi_i$

The Solution

Classification

$$\mathbf{w}^* = \sum_{i=1}^l \lambda_i^* y_i \mathbf{x}_i$$
$$f(\mathbf{x}) = \operatorname{sgn}\left(\mathbf{w}^{*T} \mathbf{x} + b^*\right)$$
$$= \operatorname{sgn}\left(\sum_{i=1}^l \lambda_i^* y_i < \mathbf{x}_i, \mathbf{x} > b^*\right)$$
$$= \operatorname{sgn}\left(\sum_{\lambda_i^* \neq 0} \lambda_i^* y_i < \mathbf{x}_i, \mathbf{x} > b^*\right)$$

Classification Using Supporters

The weight for the *i*th support vector. Bias $\int (\mathbf{X}) = \operatorname{sgn}\left(\sum_{\lambda_i^* \neq 0} \lambda_i^* y_i < \mathbf{X}_i, \mathbf{X} > + b^*\right)$ The similarity measure btw. input and the *i*th support vector.

Lagrange Multiplier

- "Lagrange Multiplier Method" is a powerful tool for constraint optimization.
- Contributed by Riemann.

Milkmaid Problem

Milkmaid Problem

Optimization with Equality Constraints

Goal: Min/Max $f(\mathbf{x})$ Subject to $g(\mathbf{x}) = 0$

Lemma:

At an extreme point, say, x*, we have

 $\nabla f(\mathbf{x}^*) = \lambda \nabla g(\mathbf{x}^*) \text{ if } \nabla g(\mathbf{x}^*) \neq 0$

Proof

$\nabla f(\mathbf{x}^*) = \lambda \nabla g(\mathbf{x}^*)$ if $\nabla g(\mathbf{x}^*) \neq 0$

x* be an extreme point.

- Let **r**(*t*) be any differentiable path on surface g(x)=0 such that $r(t_0)=x^*$.
 - $\mathbf{r}'(t_0)$ is a vector tangent to the surface $\mathbf{g}(\mathbf{x})=0$ at \mathbf{x}^* .

 $f(\mathbf{x}^*) = f(\mathbf{r}(t))|_{t=t_0}$

 $\frac{d}{dt} f(\mathbf{r}(t)) = \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t)$

Since **x**^{*} be an extreme point,

Proof

 $\nabla f(\mathbf{x}^*) = \lambda \nabla g(\mathbf{x}^*) \text{ if } \nabla g(\mathbf{x}^*) \neq 0$

$$\nabla f(\mathbf{x}^*) \perp \mathbf{r}'(t_0)$$

This is true for any **r** pass through \mathbf{x}^* on surface $g(\mathbf{x})=0$.

It implies that

 $\nabla f(\mathbf{x}^*) \perp \Gamma$,

where Γ is the *tangential plane* of surface $g(\mathbf{x})=0$ at \mathbf{x}^* .

 $0 = \nabla f(\mathbf{r}(t_0)) \cdot \mathbf{r}'(t_0) = \nabla f(\mathbf{x}^*) \cdot \mathbf{r}'(t_0)$

Optimization with Equality Constraints

Lemma:

At an extreme point, say, \mathbf{x}^* , we have $\nabla f(\mathbf{x}^*) = \lambda \nabla g(\mathbf{x}^*) \text{ if } \nabla g(\mathbf{x}^*) \neq 0$ Lagrange Multiplier

The Method of Lagrange

x: dimension *n*.

Goal: Min/Max $f(\mathbf{x})$ Subject to $g(\mathbf{x}) = 0$

Find the extreme points by solving the following equations.

$$\nabla f(\mathbf{x}) = \lambda \nabla g(\mathbf{x})$$

$$g(\mathbf{x}) = 0$$

$$\begin{cases} n+1 \text{ equations} \\ \text{with } n+1 \text{ variables} \end{cases}$$

MIMA

Goal: Min/Max
$$f(\mathbf{x})$$

Subject to $g(\mathbf{x}) = 0$

Define $L(\mathbf{x}; \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$ — Lagrangian

Solve $\begin{array}{c} \nabla_{\mathbf{x}} L(\mathbf{x}; \lambda) = \mathbf{0} \\ \nabla_{\lambda} L(\mathbf{x}; \lambda) = \mathbf{0} \end{array} \right\} \begin{array}{c} \text{Unconstraint} \\ \text{Optimization} \end{array}$

Optimization with
Multiple Equality Constraints

$$\Lambda = (\lambda_1, K, \lambda_m)^T$$

$$Min/Max \qquad f(\mathbf{x})$$
Subject to
$$g_i(\mathbf{x}) = 0, \quad i = 1, K, m$$
Define
$$L(\mathbf{x}; \Lambda) = f(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) - \text{Lagrangian}$$
Solve
$$\nabla_{\mathbf{x}, \Lambda} L(\mathbf{x}; \Lambda) = \mathbf{0}$$

Optimization with Inequality Constraints

You can always reformulate your problems into the about form.

Lagrangian:

$$L(\mathbf{x}; \mathbf{\Lambda}, \mathbf{M}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{n} \mu_j h_j(\mathbf{x})$$

Duality

MIMA

$$L(\mathbf{x}; \mathbf{\Lambda}, \mathbf{M}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{n} \mu_j h_j(\mathbf{x})$$

Let x* be a local extreme.

Saddle Point Determination

$$L(\mathbf{x}; \mathbf{\Lambda}, \mathbf{M}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{n} \mu_j h_j(\mathbf{x})$$

Saddle Point Determination

$$L(\mathbf{x}; \Lambda, \mathbf{M}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{n} \mu_j h_j(\mathbf{x})$$

The primal
The primal
Subject to

$$g_i(\mathbf{x}) = 0, \quad i = 1, \mathbf{K}, m$$

$$h_j(\mathbf{x}) \le 0, \quad j = 1, \mathbf{K}, n$$

Maximize

$$L(\mathbf{x}^*; \Lambda, \mathbf{M})$$

Subject to

$$\nabla_{\mathbf{x}, \Lambda} L(\mathbf{x}; \Lambda, \mathbf{M}) = \mathbf{0}$$

$$\mathbf{M} \ge \mathbf{0}$$

The Karush-Kuhn-Tucker Conditions

$$L(\mathbf{x}; \mathbf{\Lambda}, \mathbf{M}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{n} \mu_j h_j(\mathbf{x})$$

$$\nabla_{\mathbf{x}} L(\mathbf{x}; \mathbf{\Lambda}, \mathbf{M}) = \nabla_{\mathbf{x}} f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i \nabla_{\mathbf{x}} g_i(\mathbf{x}) + \sum_{j=1}^{n} \mu_j \nabla_{\mathbf{x}} h_j(\mathbf{x}) = \mathbf{0}$$

$$g_i(\mathbf{x}) = 0, \quad i = 1, \mathbf{K}, m$$

$$\mu_j \ge 0, \quad j = 1, \mathbf{K}, n$$

$$h_j(\mathbf{x}) \le 0, \quad j = 1, \mathbf{K}, n$$

$$\mu_j h_j(\mathbf{x}) = 0, \quad j = 1, \mathbf{K}, n$$

Non-linear SVMs MIMA Datasets that are linearly separable with noise work out great: x But what are we going to do if the dataset is just too hard? х 0 How about... mapping data to a higher-dimensional space: X

Non-linear SVMs: Feature Space

General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Nonlinear SVMs: The Kernel Trick

With this mapping, our discriminant function is now:

$$g(x) = w^T \phi(x) + b = \sum_{x_i \in SV} \lambda_i y_i \phi(x_i) \phi(x) + b$$

- No need to know this mapping explicitly, because we only use the dot product of feature vectors in both the training and test.
- A kernel function is defined as a function that corresponds to a dot product of two feature vectors in some expanded feature space:

$$K(\mathbf{x}_i, \mathbf{x}_j) \equiv \boldsymbol{\phi}(\mathbf{x}_i)^T \boldsymbol{\phi}(\mathbf{x}_j)$$

Nonlinear SVMs: The Kernel Trick

An example:

2-dimensional vectors $x=[x_1 \ x_2]$; let $K(x_i,x_j)=(1 + x_i^T x_j)^2$. Need to show that $K(x_i,x_j) = \varphi(x_i)^T \varphi(x_j)$:

$$K(\mathbf{x}_{i},\mathbf{x}_{j}) = (1 + \mathbf{x}_{i}^{T}\mathbf{x}_{j})^{2},$$

= $1 + x_{il}^{2}x_{jl}^{2} + 2 x_{il}x_{jl} x_{i2}x_{j2} + x_{i2}^{2}x_{j2}^{2} + 2x_{il}x_{jl} + 2x_{i2}x_{j2}$
= $[1 \ x_{il}^{2} \ \sqrt{2} x_{il}x_{i2} \ x_{i2}^{2} \ \sqrt{2}x_{il} \ \sqrt{2}x_{i2}] [1 \ x_{jl}^{2} \ \sqrt{2} \ x_{jl}x_{j2} \ x_{j2}^{2} \ \sqrt{2}x_{jl} \ \sqrt{2}x_{j2}]^{T}$

$$= \varphi(\mathbf{x}_i)^{\mathrm{T}} \varphi(\mathbf{x}_j), \text{ where } \varphi(\mathbf{x}) = \begin{bmatrix} 1 & x_1^2 & \sqrt{2} & x_1 x_2 & x_2^2 & \sqrt{2} x_1 & \sqrt{2} x_2 \end{bmatrix}^{\mathrm{T}}$$

Nonlinear SVMs: The Kernel Trick

Examples of commonly-used kernel functions:

Linear kernel:
$$K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$$

Polynomial kernel:
$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$$

Gaussian (Radial-Basis Function (RBF))
kernel:
$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$$

Sigmoid:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\beta_0 \mathbf{x}_i^T \mathbf{x}_j + \beta_1)$$

In general, functions that satisfy *Mercer's condition* can be kernel functions.

Nonlinear SVM: Optimization

Formulation: (Lagrangian Dual Problem)

$$\max \sum_{i} \lambda_{i} - \frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} K(x_{i}, x_{j})$$

such that $0 \le \lambda_{i} \le C$
 $\sum_{i} \lambda_{i} y_{i} = 0$

The solution of the discriminant function is

$$g(x) = w^T \phi(x) + b = \sum_{x_i \in SV} \lambda_i y_i K(x, x_i) + b$$

The optimization technique is the same.

MIMA

Support Vector Machine: Algorithm

- 1. Choose a kernel function
- 2. Choose a value for C
- 3. Solve the quadratic programming problem (many software packages available)
- 4. Construct the discriminant function from the support vectors

Other issues

- Choice of kernel
 - Gaussian or polynomial kernel is default
 - if ineffective, more elaborate kernels are needed
 - domain experts can give assistance in formulating appropriate similarity measures
- Choice of kernel parameters
 - e.g. σ in Gaussian kernel
 - σ is the distance between closest points with different classifications
 - In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.
- Optimization criterion Hard margin v.s. Soft margin
 - a lengthy series of experiments in which various parameters are tested

Comparison with Neural Network

- Neural Networks
 - Hidden Layers map to lower dimensional spaces
 - Search space has multiple local minima
 - Training is expensive
 - Classification extremely efficient
 - Requires number of hidden units and layers
 - Very good accuracy in typical domains

SVMs

- Kernel maps to a veryhigh dimensional space
- Search space has a unique minimum
- Training is extremely efficient
- Classification extremely efficient
- Kernel and cost the two parameters to select
- Very good accuracy in typical domains
- Extremely robust

UCI datasets:

http://archive.ics.uci.edu/ml/datasets.html

- Reuters-21578 Text Categorization Collection
- Wine
- Credit Approval
- Requirements
 - Use different kernels(>=3)
 - Choose best values for parameters
 - You can also use dimension reduction method, e.g., PCA

■针对UCI数据集(

http://archive.ics.uci.edu/ml/datasets.html)中的 Musk(version2), Wine,采用三种SVM来对其进 行分类,计算准确率。其中每种SVM要求用不同 的核函数。另外,采用一种集成学习方法,将不 同模型集成,集成的模型可以是不同核函数的 SVM,也可以加上神经网络、KNN、线性模型、 多项式模型等。比较集成模型与SVM模型及其他 模型的结果。

■要求:6月17日24时之前提交代码和报告。

MIMA Group

Thank You!

Any Question?

 Xin-Shun Xu @ SDU
 School of Computer Science and Technology, Shandong University