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Learning Machines
 A machine to learn the mapping

 Defined as
i iyx a

( , )fx x αa
Learning by adjusting

this parameter?
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Generalization vs. Learning
 How a machine learns?

 Adjusting the parameters so as to partition the pattern (feature) 
space for classification.

 How to adjust?
Minimize the empirical risk (traditional approaches).

 What the machine learned?
 Memorize the patterns it sees? or
 Memorize the rules it finds for different classes?
 What does the machine actually learn if it minimizes empirical 

risk only?
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Risks
Expected Risk (test error)

1
2( ) ( , ( )) ,R y f P yd  x xα α

Empirical Risk (training error)

1
2

1

( ) ( , )
l

emp i il
i

R y f


  αxα

( ) ( )?empR Rα α
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More on Empirical Risk
 How can make the empirical risk arbitrarily small?

 To let the machine have very large memorization capacity.
 Does a machine with small empirical risk also get small 

expected risk?
 How to avoid the machine to strain to memorize training 

patterns, instead of doing generalization, only?
 How to deal with the straining-memorization capacity of 

a machine?
 What the new criterion should be?
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Structure Risk Minimization

Goal: Learn both the right ‘structure’ and 
right `rules’ for classification. 

Right Rules:

E.g., Right amount and right forms of components or parameters are 
to participate in a learning machine.

Right Structure:

The empirical risk will also be reduced if right rules are learned.
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New Criterion

Total Risk = Empirical Risk +
Risk due to the 
structure of
the learning machine
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The VC Dimension
 Consider a set of function f (x,)  {1,1}.
 A given set of l points can be labeled in 2l ways. 
 If a member of the set {f ()} can be found which 

correctly assigns the labels for all labeling, then 
the set of points is shattered by that set of 
functions.

 The VC dimension of {f ()} is the maximum 
number of training points that can be shattered 
by {f ()}.

VC: Vapnik Chervonenkis
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The VC Dimension for Oriented Lines in R2

 VC dimension = 3
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More on VC Dimension
 In general, the VC dimension of a set of oriented 

hyperplanes in Rn is n+1.

 VC dimension is a measure of memorization 
capability.

 VC dimension is not directly related to number of 
parameters. Vapnik (1995) has an example with 
1 parameter and infinite VC dimension.
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Bound on Expected Risk

Expected Risk 1
2( ) ( , ( )) ,R y f P yd  x xα α

Empirical Risk 1
2

1
( ) ( , )

l

emp i il
i

R y f


  αxα

(log(( ) 2 ) 1) log( 4 1)( )emp
h lR h

l
RP    

     
 



VC Confidence
h is the VC dimension; l is the number of samples
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Bound on Expected Risk

(log(( ) 2 ) 1) log( 4 1)( )emp
h lR h

l
RP    

     
 



VC Confidence

Consider small  (e.g.,   0.05).

(log(2( ) ) 1) log( )( ) 4
emp

h lR R h
l
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Bound on Expected Risk

Consider small  (e.g.,   0.05).

(log(2( ) ) 1) log( )( ) 4
emp

h lR R h
l

  
 



Traditional approaches
minimize empirical risk only

Structure risk minimization want to minimize the bound
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VC Confidence
(log(2( ) ) 1) log( )( ) 4

emp
h lR R h

l
  

 


 =0.05 and l=10,000

Amongst machines with zero 
empirical risk, choose the one 
with smallest VC dimension

How to evaluate VC dimension?



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 15

Structure Risk Minimization

h4 h3 h2 h1

Nested subset of functions with different VC dimensions.

4321 hhhh 
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Structure Risk Minimization
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Linear SVM
 The linear separability

Linearly separable Not linearly separable
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Linear SVM
 The linear separability

Linearly separable

How would you classify 
these points using a 
linear discriminant 
function in order to 
minimize the error rate?
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Maximum Margin Classifier
( ) 1 0   i iy b i   wx

O

The linear discriminant 
function (classifier) with the
maximum margin is the best

Margin is defined as the width 
that the boundary could be 
increased by before hitting 
a data point

Why is it the best?
 Intuitively robust to outliners 

and thus strong generalization 
ability 

Supporters
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Relation Between VC Dimension and Margin

 What is the relation btw. the margin width and 
VC dimension?

 Let x  belong to sphere of radius R. The set of -
margin separating hyperplanes has VC 
dimension h bounded by:

What does this mean?
d is the dimension of x, 
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Linear SVM
 The linear separability

Linearly separable

w
0b wx 0b wx

0b wx 0b wx

such at, thbw1b  wx 1b  wx

1b  wx 1b  wx

Linearly Separable

1fo1 r 
for  11

i

i

i

i

yb
b y

 
 

  
  

wx
wx

( ) 1 0   i iy b i   wx
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Margin Width

w

( ) 1 0   i iy b i   wx

O

1 1
|| || || ||

bd b  
 

w w
2

|| ||


w

How about maximize the margin?
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Building SVM

Minimize

Subject to

21
2 || ||w

( ) 1 0   T
i iy b i   w x

This requires the knowledge about  Lagrange Multiplier.
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The Method of Lagrange

Minimize

Subject to

21
2 || ||w

( ) 1 0   T
i iy b i   w x

2

1

1( , ; ) || || ( ) 1
2

l

i i
i

i
TbL y b



      xw w w

The Lagrangian:

0i 

Minimize it w.r.t w & b, while maximize it w.r.t. .
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The Method of Lagrange
 Why Lagrange?

 The constraints will be replaced by constraints on the 
Lagrange multipliers, which will be much easier to 
handle.

 In this reformulation of the problem, the training data 
will only appear in the form of dot products between 
vectors.
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The Method of Lagrange

Minimize

Subject to

21
2 || ||w

( ) 1 0   T
i iy b i   w x

2

1

1( , ; ) || || ( ) 1
2

l

i i
i

i
TbL y b



      xw w w

The Lagrangian:

0i 

Minimize it w.r.t w & b, while maximize it w.r.t. .

What value of i
should be if it is 

feasible and nonzero?

How about if it is 
zero?
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The Method of Lagrange

Minimize

Subject to

21
2 || ||w

( ) 1 0   T
i iy b i   w x

2

1

1( , ; ) || || ( ) 1
2

l

i i
i

i
TbL y b



      xw w w

The Lagrangian:

0i 

2

1 1

1 || || ( )
2

l l

i i
i i

i i
Ty b 

 

    xw w

2

1 1

1( , ; ) || || ( )
2

l l

i
T

i i
i i

iL yb b 
 

     w w xw
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Duality

Minimize

Subject to

21
2 || ||w

( ) 1 0   T
i iy b i   w x

2

1 1

1( , ; ) || || ( )
2

l l

i
T

i i
i i

iL yb b 
 

     w w xw

Maximize
Subject to

*( )*, ;bL w

, ( , ; )b bL w w 0

0,    1, ,i i l   K
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Duality
2

1 1

1( , ; ) || || ( )
2

l l

i
T

i i
i i

iL yb b 
 

     w w xw

Maximize
Subject to

*( )*, ;bL w

, ( , ; )b bL w w 0

0,    1, ,i i l   K

1

( , ; )
l

i
i

i ibL y


   w w xw 0
1

*
l

ii i
i

y


w x

1

( , ; ) 0
l

b ii
i

bL y


   w
1

0
l

i
i

i y
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Duality
2

1 1

1( , ; ) || || ( )
2

l l

i
T

i i
i i

iL yb b 
 

     w w xw

1

( , ; )
l

i
i

i ibL y


   w w xw 0
1

*
l

ii i
i

y


w x

1

( , ; ) 0
l

b ii
i

bL y


   w
1

0
l

i
i

i y




1 1 1 1 1 1

1( , ; )*
2

*
T Tl l l l l l

i i i i i i i i i
i i i

i i i i i
i i

i
i

L y y y b yb y     
     

   
      

   
      x x xw x

1 1 1

1
2

Tl l l

i i i i
i i

i i
i

iy y  
  

 
   

 
  x x

1 1 1

1 ,
2

l l l

i j i j
i i j

i i j y y  
  

     x x Maximize
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Duality
2

1 1

1( , ; ) || || ( )
2

l l

i
T

i i
i i

iL yb b 
 

     w w xw

1

( , ; )
l

i
i

i ibL y


   w w xw 0
1

*
l

ii i
i

y


w x

1

( , ; ) 0
l

b ii
i

bL y


   w
1

0
l

i
i

i y




1 1 1 1 1 1

1( , ; )*
2

*
T Tl l l l l l

i i i i i i i i i
i i i

i i i i i
i i

i
i

L y y y b yb y     
     

   
      

   
      x x xw x

1 1 1

1
2

Tl l l

i i i i
i i

i i
i

iy y  
  

 
   

 
  x x

1 1 1

1 ,
2

l l l

i j i j
i i j

i i j y y  
  

     x x Maximize

1( )
2

TF D      1 1( )
2

TF D      1

0T y 0T y
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Duality

Minimize

Subject to

21
2 || ||w

( ) 1 0   T
i iy b i   w x

Maximize

Subject to

  0

1( )
2

TF D  1

0T y

The Primal

The Dual
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The Solution

Maximize

Subject to

  0

1( )
2

TF D  1

0T y
The Dual

Find * by … 
*

1

*
l

ii i
i

y


w x * ?b 

Quadratic Programming
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The Solution

Find * by … 
*

1

*
l

ii i
i

y


w x

Quadratic Programming

2

1

1( , ; ) || || ( ) 1
2

l

i i
i

i
TbL y b



      xw w w

The Lagrangian:

** ,    0T
i iib y   xw

> 0.
Call it a support 
vector is i > 0.

The Karush-Kuhn-Tucker
Conditions
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The Karush-Kuhn-Tucker Conditions

( ) 1 0,    1, ,i i
Ty ib l   w x K

0,    1, ,i i l   K

1

( , ; )
l

i
i

i ibL y


   w w xw 0

1

( , ; ) 0
l

b ii
i

bL y


   w

2

1

1( , ; ) || || ( ) 1
2

l

i i
i

i
TbL y b



      xw w w

( ) 1 0,    1, ,i i
T

i by i l      w x K
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Classification
*

1

*
l

ii i
i

y


w x

 ( ) sgn * *T bf  wx x

1

*sgn *,
l

i i
i

i y b


 
    

 
 x x

*

*

0

sgn , *
i

i i iy b





 
     

 
 xx
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Classification Using Supporters

*

*

0

( ) sgn , *
i

i iif by





 
     

 
x xx

The similarity measure btw.
input and the ith support vector.

The weight for 
the ith support vector. Bias
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Linear SVM
 Then non-separable case

We require that
1for 1  

1  f r 1o
ii

i i

i

i

b
yb
y


 
 

   
   

wx
wx

( ) 1 0   i iiy b i    wx

0   i i  
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Mathematic Formulation

Minimize

Subject to

21
2 || ||w

( ) 1 0   T
i i iy b i    w x

0   i i  

 k

ii
C  

For simplicity, we consider k = 1.
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Mathematic Formulation

Minimize

Subject to

21
2 || ||w

( ) 1 0   T
i i iy b i    w x

0   i i  

 k

ii
C  

For simplicity, we consider k = 1.
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The Lagrangian

i iC  

2

( , , ; )
1 ||

,

|| ( ) 1
2 i

T
i i ii i ii i i

L

C

b

y b      

 





   

w

w w x

Minimize

Subject to

21
2 || ||w

( ) 1 0   T
i i iy b i    w x

0   i i  

0, 0i i  
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Duality

i iC  Minimize

Subject to

21
2 || ||w

( ) 1 0   T
i i iy b i    w x

0   i i  

Maximize

Subject to

( *, *, ; ,* )L b  w

, , ( , , ; ) 0,b L b   w w

,  0 0

21( , , ; ) ||, || ( ) 1
2 i

T
i i ii i ii i iL Cb y b            w w w x21( , , ; ) ||, || ( ) 1

2 i
T

i i ii i ii i iL Cb y b            w w w x

0, 0i i  0, 0i i  
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Duality

Maximize

Subject to

( *, *, ; ,* )L b  w

, , ( , , ; ) 0,b L b   w w

,  0 0

21( , , ; ) ||, || ( ) 1
2 i

T
i i ii i ii i iL Cb y b            w w w x21( , , ; ) ||, || ( ) 1

2 i
T

i i ii i ii i iL Cb y b            w w w x

0, 0i i  0, 0i i  

( , , ; ), ii ii
L b y     w w w x 0

,( , , ; ) 0ii ibL b y   w

,( , , ; ) 0
i i ib CL       w

* i ii i yw x

0i ii
y 

i iC  

0 i C 
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Duality
21( , , ; ) ||, || ( ) 1

2 i
T

i i ii i ii i iL Cb y b            w w w x21( , , ; ) ||, || ( ) 1
2 i

T
i i ii i ii i iL Cb y b            w w w x

0, 0i i  0, 0i i  

( , , ; ), ii ii
L b y     w w w x 0

,( , , ; ) 0ii ibL b y   w

,( , , ; ) 0
i i ib CL       w

* i ii i yw x

0i ii
y 

i iC  

0 i C 
1( *, *, ; ) ,* ,
2 i j i jjii i ji

L b y y         w x x,( )F   

Maximize this
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Duality
21( , , ; ) ||, || ( ) 1

2 i
T

i i ii i ii i iL Cb y b            w w w x21( , , ; ) ||, || ( ) 1
2 i

T
i i ii i ii i iL Cb y b            w w w x

0, 0i i  0, 0i i  

( , , ; ), ii ii
L b y     w w w x 0

,( , , ; ) 0ii ibL b y   w

,( , , ; ) 0
i i ib CL       w

* i ii i yw x

0i ii
y 

i iC  

0 i C 
1( *, *, ; ) ,* ,
2 i j i jjii i ji

L b y y         w x x,( )F   

Maximize this 1( )
2

TF D  1 1( )
2

TF D  1

0T y 0T y

0 C  0 C  
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Duality

Maximize

Subject to

C  0 1

1( )
2

TF D  1

0T y

The Primal

The Dual

Minimize

Subject to

 21
2 || ||

k

i iC  w

( ) 1 0   T
i i iy b i    w x

0   i i  
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The Karush-Kuhn-Tucker Conditions

( ) 1 0T
i i iy b    w x

0i 

0ii  

( , , ; ), ii ii
L b y     w w w x 0

,( , , ; ) 0ii ibL b y   w

,( , , ; ) 0
i i ib CL       w

0i 

( ) 1 0T
i ii iy b       w x

0i 

21( , , ; ) ||, || ( ) 1
2 i

T
i i ii i ii i iL Cb y b            w w w x21( , , ; ) ||, || ( ) 1

2 i
T

i i ii i ii i iL Cb y b            w w w x
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The Solution

Find * by … 
**

1

l

ii i
i

y


w x

* ?b 

Maximize

Subject to

C  0 1

1( )
2

TF D  1

0T y
The Dual

? 

Quadratic Programming
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The Solution

Find * by … 
**

1

l

ii i
i

y


w x

The Lagrangian:

2

( , , ; )
1 ||

,

|| ( ) 1
2 i

T
i i ii i ii i i

L

C

b

y b      

 





   

w

w w x

* * ,    0<T
i i ib y C  w x

< C
Call it a support 

vector is 0 < i < C.
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The Solution

Find * by … 
**

1

l

ii i
i

y


w x

* * ,    0<T
i i ib y C  w x

< C
Call it a support 

vector is 0 < i < C.

 max 0,1 ( * *)i i iy b  w x

.
A false classification 

pattern if i > 1.
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Classification
*

1

*
l

ii i
i

y


w x

 ( ) sgn * *T bf  wx x

1

*sgn *,
l

i i
i

i y b


 
    

 
 x x

*

*

0

sgn , *
i

i i iy b





 
     

 
 xx
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Classification Using Supporters

*

*

0

( ) sgn , *
i

i iif by





 
     

 
x xx

The similarity measure btw.
input and the ith support vector.

The weight for 
the ith support vector. Bias
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Lagrange Multiplier
 “Lagrange Multiplier Method” is a powerful tool 

for constraint optimization.

 Contributed by Riemann.
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Milkmaid Problem
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Milkmaid Problem
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Milkmaid Problem

(x1, y1)

(x2, y2)

(x, y)Goal:
Minimize

( , )f x y

Subject to

( , ) 0g x y 

2
2 2

1
( , ) ( ) ( )i i

i
f x y x x y y
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Observation

(x1, y1)

(x2, y2)

(x*, y*)Goal:
Minimize

( , )f x y

Subject to

( , ) 0g x y 
At the extreme point, say, (x*, y*)

f (x*, y*) = g(x*, y*).

2
2 2

1
( , ) ( ) ( )i i

i
f x y x x y y
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Optimization with Equality Constraints

Goal: Min/Max ( )f x
Subject to ( ) 0g x

Lemma:

At an extreme point, say, x*, we have 

( *) *) ( 0( * )f gg  x xx if
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Proof

( )f x

( ) 0g x

*x

Let
x* be an extreme point.
r(t) be any differentiable path on 
surface g(x)=0 such that r(t0)=x*.

0( )tr is a vector tangent to the 
surface g(x)=0 at x*.

0
( *) ( ( )) |t tf f t x r

Since x* be an extreme point,

( ( )) ( ( )) ( )d
dt f t f t t  r r r

0 00 ( ( )) ( )f t t  r r 0( *) ( )f t  x r

r(t)
r(t0)

( *) *) ( 0( * )f gg  x xx if
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Proof

( )f x

( ) 0g x

*x

0 00 ( ( )) ( )f t t  r r 0( *) ( )f t  x r

r(t)
r(t0)

0( )tr

( *)f x

0(( )*)f t rx
This is true for any r pass through x* on 
surface g(x)=0.

It implies that ( *) ,f  x
where  is the tangential plane of surface 
g(x)=0 at x*.

( *) *) ( 0( * )f gg  x xx if
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Optimization with Equality Constraints

Goal: Min/Max ( )f x
Subject to ( ) 0g x

Lemma:
At an extreme point, say, x*, we have 

( *) *) ( 0( * )f gg  x xx if

Lagrange Multiplier
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The Method of Lagrange

Goal: Min/Max ( )f x
Subject to ( ) 0g x

Find the extreme points by solving the following equations.

( ) ( )f g  x x

( ) 0g x
n + 1 equations 
with n + 1 variables

x: dimension n.



MIMA

Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University 63

Lagrangian

Goal: Min/Max ( )f x
Subject to ( ) 0g x

Constraint
Optimization

Define ( ; ) ( ) ( )L f g  x x x Lagrangian

Solve
( ; )L  x x 0

( ; )L  x 0
Unconstraint
Optimization
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Optimization with
Multiple Equality Constraints

Min/Max ( )f x
Subject to ( ) 0,     1, ,ig i m x K

Define
1

( ; ) ( ) ( )
m

i
i

iL f g


  x x x

Solve , ( ; )L x x 0

1,( , )m
T   K

Lagrangian
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Optimization with
Inequality Constraints

Minimize ( )f x
Subject to ( ) 0,     1, ,ig i m x K

( ) 0,     1, ,jh j n x K

You can always reformulate your problems into the about form.
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Lagrange Multipliers

Lagrangian:

1 1
( ; ) ( ) ( (, ) )

m n

i j
i j

i jL f g h 
 

     x x x x

1,( , )m
T   K

1,( , )n
T   K 0i 

Minimize ( )f x
Subject to ( ) 0,     1, ,ig i m x K

( ) 0,     1, ,jh j n x K
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Lagrange Multipliers

Lagrangian:

1 1
( ; ) ( ) ( (, ) )

m n

i j
i j

i jL f g h 
 

     x x x x

1,( , )m
T   K

1,( , )n
T   K 0i 

Minimize ( )f x
Subject to ( ) 0,     1, ,ig i m x K

( ) 0,     1, ,jh j n x K
0 for feasible 

solutions

negative for 
feasible solutions
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Duality

Let x* be a local extreme.

*,( ; ) |L   x x x0 x

( ) (, *; ),D L   x

1 1

( ) ( *) ( *) ( *), i j

m n

i j
i j

D f g h 
 

    x x x

Define

( *)f x

Maximize it w.r.t. 

1 1
( ; ) ( ) ( (, ) )

m n

i j
i j

i jL f g h 
 

     x x x x
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Duality

Let x* be a local extreme.

*,( ; ) |L   x x x0 x

( ) (, *; ),D L   x

1 1

( ) ( *) ( *) ( *), i j

m n

i j
i j

D f g h 
 

    x x x

Define

( *)f x

Maximize it w.r.t. 

1 1
( ; ) ( ) ( (, ) )

m n

i j
i j

i jL f g h 
 

     x x x xTo minimize the Lagrangian w.r.t x, 
while to maximize it w.r.t.  and .
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Saddle Point Determination

1 1

( ; ) ( ) ( (, ) )
m n

i j
i j

i jL f g h 
 

     x x x x
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Saddle Point Determination

1 1

( ; ) ( ) ( (, ) )
m n

i j
i j

i jL f g h 
 

     x x x x

Minimize ( )f x
Subject to ( ) 0,     1, ,ig i m x K

( ) 0,     1, ,jh j n x K

The primal

The dual
Maximize ( *; ),L  x

Subject to

  0
, ( ; , )L  x x 0
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The Karush-Kuhn-Tucker Conditions

1 1
( ; ) ( ) ( ), ) (ji

m n

i j
i j

L f g h 
 

          x x x xx x x x 0

( ) 0,    1, ,ig i m x K

( ) 0,    1, ,jh j n x K

0,    1, ,j j n   K

( ) 0,    1, ,j jh j n  x K

1 1
( ; ) ( ) ( (, ) )

m n

i j
i j

i jL f g h 
 

     x x x x
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Non-linear SVMs
 Datasets that are linearly separable with noise work out great:

0 x

0 x

x2

0 x

 But what are we going to do if the dataset is just too hard? 

 How about… mapping data to a higher-dimensional space:
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Non-linear SVMs:  Feature Space
 General idea:  the original input space can be mapped 

to some higher-dimensional feature space where the 
training set is separable:

Φ:  x → φ(x)
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Nonlinear SVMs: The Kernel Trick
 With this mapping, our discriminant function is now:

 No need to know this mapping explicitly, because we only 
use the dot product of feature vectors in both the training and 
test.

 A kernel function is defined as a function that corresponds to 
a dot product of two feature vectors in some expanded 
feature space:

( , ) ( ) ( )T
i j i jK  x x x x

bxxybxwxg
SVx

iii
T

i

 


)()()()( 
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Nonlinear SVMs: The Kernel Trick

2-dimensional vectors x=[x1   x2];  
let K(xi,xj)=(1 + xi

Txj)2
,

Need to show that K(xi,xj) = φ(xi) Tφ(xj):

K(xi,xj)=(1 + xi
Txj)2

,

= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2

= [1  xi1
2    √2 xi1xi2  xi2

2    √2xi1  √2xi2] [1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2]T 

= φ(xi) Tφ(xj),    where φ(x) = [1  x1
2     √2 x1x2  x2

2     √2x1    √2x2] T 

 An example:
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Nonlinear SVMs: The Kernel Trick

 Linear kernel:

2

2( , ) exp( )
2

i j
i jK




 

x x
x x

( , ) T
i j i jK x x x x

( , ) (1 )T p
i j i jK  x x x x

0 1( , ) tanh( )T
i j i jK   x x x x

 Examples of commonly-used kernel functions:

 Polynomial kernel:

 Gaussian (Radial-Basis Function (RBF) ) 
kernel:

 Sigmoid:

 In general, functions that satisfy Mercer’s condition can be 
kernel functions.
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Nonlinear SVM: Optimization
 Formulation: (Lagrangian Dual Problem)

such that

 The solution of the discriminant function is

 The optimization technique is the same.

bxxKybxwxg
SVx

iii
T

i

 


),()()( 

 
j

jijiji
ii

i xxKyy ),(
2
1max 

0
0






i

ii

i

y
C
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Support Vector Machine: Algorithm

 1. Choose a kernel function
 2. Choose a value for C
 3. Solve the quadratic programming 

problem (many software packages 
available)

 4. Construct the discriminant function from 
the support vectors
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Other issues
 Choice of kernel

- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed
- domain experts can give assistance in formulating appropriate 
similarity measures

 Choice of kernel parameters
- e.g. σ in Gaussian kernel
- σ is the distance between closest points with different classifications 
- In the absence of reliable criteria, applications rely on the use of a 
validation set or cross-validation to set such parameters. 

 Optimization criterion – Hard margin v.s. Soft margin
- a lengthy series of experiments in which various parameters are 
tested
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Comparison with Neural Networks
 Neural Networks

 Hidden Layers map to 
lower dimensional 
spaces

 Search space has 
multiple local minima

 Training is expensive
 Classification extremely 

efficient
 Requires number of 

hidden units and layers
 Very good accuracy in 

typical domains

 SVMs
 Kernel maps to a very-

high dimensional space
 Search space has a 

unique minimum
 Training is extremely 

efficient
 Classification extremely 

efficient
 Kernel and cost the two 

parameters to select
 Very good accuracy in 

typical domains
 Extremely robust
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 UCI datasets: 
http://archive.ics.uci.edu/ml/datasets.html
 Reuters-21578 Text Categorization Collection
 Wine
 Credit Approval

 Requirements
 Use different kernels(>=3)
 Choose best values for parameters
 You can also use dimension reduction method, e.g., 

PCA
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 针对UCI数据集（
http://archive.ics.uci.edu/ml/datasets.html）中的
Musk(version2), Wine，采用三种SVM来对其进
行分类，计算准确率。其中每种SVM要求用不同
的核函数。另外，采用一种集成学习方法，将不
同模型集成，集成的模型可以是不同核函数的
SVM，也可以加上神经网络、KNN、线性模型、
多项式模型等。比较集成模型与SVM模型及其他
模型的结果。

 要求：6月17日24时之前提交代码和报告。
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Any Question?


