Chapter 11

File System Implementation

SHANDONG UNIVERSITY

~lle-System Structure
~1le-System Implementation
Directory Implementation
Allocation Methods
Free-Space Management
Efficiency and Performance
Recovery

Log-Structured File Systems
NFS

Example: WAFL File System

SHANDONG UNIVERSITY 2

To describe the detalls of implementing local
file systems and directory structures

To describe the implementation of remote file
systems

To discuss block allocation and free-block
algorithms and trade-offs

SHANDONG UNIVERSITY 3

11.1 File-System Structure

Characteristics that make disks convenient medium

B A disk can be rewritten in place; it is possible to read a block
from the disk, modify the block, and write it back into the
same place.

B From a disk, we can access directly any given block of
iInformation it contains.

OS imposes one or more file systems to allow the

data to be stored, located, and retrieved easily

A file system poses two design problems:
B How should the file system look to the user

B How to create algorithms and data structures to map the
logical file system onto the physical secondary-storage
devices.

SHANDONG UNIVERSITY

File-System Structure

File structure
B [ogical storage unit
B Collection of related information

File system resides on secondary storage
(disks)

File system organized into layers

File control block — storage structure
consisting of information about a file

SHANDONG UNIVERSITY

Layered File System

application programs

logical file system

!

file-organization module

!

basic file system

{

|/O control

!

devices

Manages metadata information, FCB will
be needed for each file.

Knows about files and their logical blocks
as well as physical blocks.

appropriate device driver to read and write
blocks on the disk

Consists of device drivers and interrupt
handlers to transfer information between

Issues generic commands to the 1
memory and disk. }

SHANDONG UNIVERSITY

File system implementation

Several on-disk and in-memory structures are used to
Implement a file system.

On disk, the file system contains information about
how to boot an OS, total number of blocks, the free
blocks, directory structure, and so on.

B A boot control block

B Volume control block contains partition information—number
of blocks, size of the blocks, free block count and pointers.
UFES: superblock; NTES: master file table.

B A directory structure
B A per-file FCB contains many details about the file.

SHANDONG UNIVERSITY 7

A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

SHANDONG UNIVERSITY 8

File system implementation

In memory

An in-memory mount table contains information
about each mounted volume.

An in-memory directory-structure cache holds the
directory information of recently accessed
directories.

System-wide open-file table contains a pointer of
the FCB of each open file, as well as other
iInformation.

Per-process open-file table contains a pointer to
the appropriate entry in the system-wide open-file
table, as well as other information.

SHANDONG UNIVERSITY

In-Memory File System Structures

The following figure illustrates the necessary

file system structures provided by the operating
systems.

Figure 12-3(a) refers to opening a file.

Figure 12-3(b) refers to reading a file.

SHANDONG UNIVERSITY 10

In-Memory File System Structures

F

Y

directory structure

open (file name) -
directory structure

file-control block

user space kernel memory secondary storage
(a)
index
/
22 /
/ data blocks

read (index) T ——

per-process system-wide file-control block

open-file table open-file table

user space kernel memory secondary storage

(b)

SHANDONG UNIVERSITY 11

Create, open, use and close a file

[0 Create anew file:

B [ocate anew FCB
B Read appropriate directory into memory
B Update it with the new file name and FCB
B \Write it back to the disk
0 Open afile
B Find the file
B Copythe FCB to a system-wide open-file table in memory
B Made an entry in the per-process open-file table
B Return a pointer to the entry in the per-process open-file table

[0 File descriptor in Unix
0 File handler in Windows

SHANDONG UNIVERSITY 12

Create, open, use and close a file

Use
B All operations are performed via the file pointer

Close a file

B The entry in per-process open-file table is
removed

B Open count in system-wide open-file table is
decremented. If the open count is O, then the
entry is removed

SHANDONG UNIVERSITY 13

Partitions and Mounting

Each partition can be raw or cooked

B Swap

Boot information can be stored in a separate
partition.

System can be dual-booted

B A boot loader is needed.

1 BootManager bootstar 8.3,
[1 Linux GRUB, GRUB - GRand Unified Bootloader

Root partition contains the OS kernel and
sometimes other system files.

mounting

SHANDONG UNIVERSITY 14

Virtual File Systems

Virtual File Systems (VFS) provide an object-
oriented way of implementing file systems.

VES allows the same system call interface (the
API) to be used for different types of file
systems.

The API is to the VES interface, rather than
any specific type of file system.

SHANDONG UNIVERSITY 15

Schematic View of Virtual File System

file-system interface

Y

VVES interface

l Y Y

local file system local file system remote file system
type 1 type 2 type 1

S~

network

SHANDONG UNIVERSITY 16

Virtual File System

VES layer serves two functions:

B [t separates file-system-generic operations from their
Implementation by defining a clean VFS interface.

B The VFS provides a mechanism for uniquely representing a
file throughout a network, based on VNODE.

BARYE, VFSIRELATINGE

B RAANERG AR,

B I VHRGSITNFEEEFEEREE;

B AIEH) S EAYE A RE;

B SR ERSHRZEEER, IBE{IMSFEIFEXEIAECHE

SHANDONG UNIVERSITY 17

Linux VFS

AP

| MBS ARSI, |
 open(read() :
| writef 3. close(Y5 i

v FETREF || mgmmdmarEE |
VFS | #, sys_open() |

HESHET sys_read() sys_write().
' aws rlnse VSR

e o o o ———— ——————————

| B RAENY
| FRRIEEEL open(). |
i read; . writel 3. close) !

e o o o —_—— — —————————

SRR

w5 ez ee l Linz BB R GER

SHANDONG UNIVERSITY

18

Directory Implementation

Linear list of file names with pointer to the
data blocks.

B simple to program
B time-consuming to execute

1 Hash Table — linear list with hash data
structure.
B decreases directory search time

B collisions — situations where two file names hash
to the same location

B fixed size

SHANDONG UNIVERSITY 19

Hash table

Hox &

Hash PR 2%

B{E i :

SHANDONG UNIVERSITY 20

11.4 Allocation Methods

An allocation method refers to how disk blocks
are allocated for files:

B Contiguous allocation
B Linked allocation

B Indexed allocation

SHANDONG UNIVERSITY

21

Contiguous Allocation

on the disk

Each file occupies a set of contiguous blocks

—
B 020

count

S o | 3[]
f

4] 5[] G

8] o[110111
tr

12[J13[14]15[]

16 117[J18[]19[]

mail

20121 J22[]23[]
24[]25[126 127[]

list

directory

file
count
tr
mail
list
f

start length

0
14
19
28

6

2

N Ao W

28[]29[]30[131[]
\ /

SHANDONG UNIVERSITY

Contiguous Allocation

Mapping from logical to physical

Block to be accessed =i + starting address

SHANDONG UNIVERSITY 23

Contiguous Allocation of Disk Space

Characteristic

B Simple — only starting location (block #) and length
(number of blocks) are required

B Random access

B \Wasteful of space (dynamic storage-allocation
problem)

B Files cannot grow

SHANDONG UNIVERSITY

24

Extent-Based Systems

Many newer file systems (l.e. Veritas File
System) use a modified contiguous allocation
scheme

Extent-based file systems allocate disk blocks
In extents

An extent is a contiguous block of disks
B Extents are allocated for file allocation
B A file consists of one or more extents.

SHANDONG UNIVERSITY 25

Linked Allocation

Each file is a linked list of disk blocks: blocks
may be scattered anywhere on the disk.

block

pointer

SHANDONG UNIVERSITY 26

Linked Allocation

directory

file start end
jeep 9 25

1213114/ 115]
16 [J17[]18[119[]
2052125235
242526 []27[]
28]29[130[]31[]
o

SHANDONG UNIVERSITY 27

Linked Allocation (Cont.)

[l Advantages:
B Simple — need only starting address
B Free-space management system — no waste of space

[l Disadvantages

B Norandom access

B Pointers takes space

B reliability LAST

L1 Mapping

R

Block to be accessed is the Qth block in the linked chain of
blocks representing the file.
Displacement into block =R + 1

File-allocation table (FAT) — disk-space allocation used by MS-DOS
and OS/2.

SHANDONG UNIVERSITY 28

File-Allocation Table

B XEHEE D BT E#Z 7 XFATER.
FBPMEEREIZERPE—I, Zxe LB RSRER],
HREFZFEHPESENHERNRSE. RIFRSBERSIH
FAT%E@é\ﬁdﬁFT RER S, XS —HIMAEE
g FE—R, 12T FAT%EE’JE%&#FQ*?EE x
SE ARV FBOERZR

AR — TR H B 5 Bk B — 1 E A0

FATSRE, FIETRAOMHHERATE X heaoR1E, AScH
SR (B AR R0,

————— = 931 WO

MRAXFATIRAZER, FATREL S R0 8 SB A=/
SLSSERTE]. BIBIISENFATIEE, BiEEReik BT (AR
AL E, MmscIRpEHLEoE],

SHANDONG UNIVERSITY 29

File-Allocation Table

directory entry
test | eee | D217 |—

name start block

—» 217 618

339 N

618 339

no. of disk blocks -1

FAT

SHANDONG UNIVERSITY 30

Indexed Allocation

Brings all pointers together into the index block.
Logical view.

index table

SHANDONG UNIVERSITY 31

>

| CRINE [N |

4] 5[] 7[]
8[] gtli%

12[]13[14

2425 [26[127]
28[129 130131

directory
file index block
jeep 19

h.. @

SHANDONG UNIVERSITY

Example of Indexed Allocation

32

Indexed Allocation (Cont.)

[0 Need index table

[0 Random access

[l Dynamic access without external fragmentation, but have
overhead of index block.

1 Mapping from logical to physical in a file of maximum size
of 256K words and block size of 512 words. We need only

1 block for index table.

SHANDONG UNIVERSITY 33

Indexed Allocation — Mapping (Cont.)

Mapping from logical to physical in a file of
unbounded length (block size of 512 words).

Linked scheme — Link blocks of index table (no
limit on size).
Two-level index (maximum file size ?)

SHANDONG UNIVERSITY 34

Indexed Allocation — Mapping (Cont.)

AN

Ll

\

outer-index

index table file

SHANDONG UNIVERSITY 35

Combined Scheme: UNIX (4K bytes per block)

O0000

15 pointers

12 direct pointers

1 single indirect pointer
1 double indirect pointer
1 triple indirect pointer

mode

owners (2)

timestamps (3)

—» data

size block count

— data

—» data

direct blocks =

—» data

» data .,

single indirect ——»] e g data

= S——»{ data =
double indirect o ———>» data
triple indirect - > 2 » data
~—— data

SHANDONG UNIVERSITY 36

11.5 Free-Space Management

Bit vector (n blocks)

o1 2 n-1

_ 1 = block]/] free
bit[/] =
0 = block][i] occupied

Block number calculation
(number of bits per word) *

(number of 0-value words) +
offset of first 1 bit

SHANDONG UNIVERSITY 37

Free-Space Management (Cont.)

Bit map requires extra space
B Example:

block size = 212 bytes

disk size = 230 bytes (1 gigabyte)

n = 239/212 = 218 pjts (or 32K bytes)
Easy to get contiguous files

SHANDONG UNIVERSITY 38

Free-Space Management (Cont.)

Linked list (free list)

B No waste of space

B Cannot get contiguous space easily

B [ong time to find large number of free blocks
Grouping

B To store the addresses of n free blocks in the first block.

B The last block contains the addresses of another n free
blocks.

B The addresses of large number of free blocks can be found
quickly.
Counting

B To keep the address of the first block, and the number n of
free contiguous blocks that follow the first one.

SHANDONG UNIVERSITY 39

Free-Space Management (Cont.)

Need to protect:
B Pointer to free list
B Bit map
1 Must be kept on disk
1 Copy in memory and disk may differ
[0 Cannot allow for block]i] to have a situation where biti]
=1 in memory and bit[i] = O on disk
B Solution:
[0 Set bit[i] = 1 in disk
L1 Allocate block]i]
[Set bit[i] = 1 in memory

SHANDONG UNIVERSITY

40

Linked Free Space List on Disk

free-space list head

20[]21[]22F 123[]

24[125[H26 W27

28[]29[]30[131[]
A F

SHANDONG UNIVERSITY 41

11.6 Efficiency and Performance

Efficiency dependent on:

B disk allocation and directory algorithms
L i-node

B types of data kept in file’s directory entry
] pointers

Performance

B disk cache — separate section of main memory for
frequently used blocks

B free-behind and read-ahead — techniques to
optimize sequential access

B improve PC performance by dedicating section of
memory as virtual disk, or RAM disk

SHANDONG UNIVERSITY 42

Page Cache

A page cache caches pages rather than disk
blocks using virtual memory techniques

Memory-mapped I/O uses a page cache

Routine I/O through the file system uses the
buffer (disk) cache

This leads to the following figure

SHANDONG UNIVERSITY 43

/O Without a Unified Buffer Cache

/O using

memory-mapped I/O read() and write()

I

page cache

\

buffer cache

|

file system

SHANDONG UNIVERSITY 44

Unified Buffer Cache

In Unix and Linux, a unified buffer cache uses
the same page cache to cache both memory-
mapped pages and ordinary file system 1/O

SHANDONG UNIVERSITY 45

/O Using a Unified Buffer Cache

/O using
read() and write()

N/

buffer cache

|

file system

memory-mapped I/O

SHANDONG UNIVERSITY 46

11.7 Recovery

Consistency checking — compares data in
directory structure with data blocks on disk,
and tries to fix inconsistencies

B UNIX—fsck

B MS-DOS--chkdsk

Use system programs to back up data from
disk to another storage device (floppy disk,
magnetic tape, other magnetic disk, optical)

Recover lost file or disk by restoring data from
backup

SHANDONG UNIVERSITY 47

11.8 Log Structured File Systems

Log structured (or journaling) file systems record
each update to the file system as a transaction

All transactions are written to a log

B A transaction is considered committed once it is written to
the log

B However, the file system may not yet be updated

The transactions in the log are asynchronously written

to thn fi!e svstem
y\JL\lI 11

1IN 11

B When the file system is modified, the transaction is removed
from the log

If the file system crashes, all remaining transactions in
the log must still be performed

SHANDONG UNIVERSITY 48

The Sun Network File System (NFS)

An implementation and a specification of a
software system for accessing remote files
across LANs (or WANS)

The implementation is part of the Solaris and
SunOS operating systems running on Sun
workstations using an unreliable datagram
protocol (UDP/IP protocol and Ethernet)

SHANDONG UNIVERSITY 49

NFS (Cont.)

Interconnected workstations viewed as a set of

Independent machines with independent file systems,

which allows sharing among these file systems in a

transparent manner

B A remote directory is mounted over a local file system
directory

O The mounted directory looks like an integral subtree of the
local file system, replacing the subtree descending from the
local directory

B Specification of the remote directory for the mount operation
Is nontransparent; the host name of the remote directory has
to be provided

[0 Files in the remote directory can then be accessed in a
transparent manner

B Subject to access-rights accreditation, potentially any file
system (or directory within a file system), can be mounted
remotely on top of any local directory

SHANDONG UNIVERSITY 50

NFS (Cont.)

NFS is designed to operate in a heterogeneous
environment of different machines, operating systems,
and network architectures; the NFS specifications
iIndependent of these media

This independence is achieved through the use of
RPC primitives built on top of an External Data
Representation (XDR) protocol used between two
Implementation-independent interfaces

The NFS specification distinguishes between the
services provided by a mount mechanism and the
actual remote-file-access services

SHANDONG UNIVERSITY 51

Three Independent File Systems

usr

local

Si:

usr

shared

dir1

S2:

usr

SHANDONG UNIVERSITY

52

Mounting in NFS

usr usr

local local

SHANDONG UNIVERSITY 53

NFS Mount Protocol

Ll
Ll

Establishes initial logical connection between server and client
Mount operation includes name of remote directory to be mounted
and name of server machine storing it

B Mount request is mapped to corresponding RPC and forwarded to
mount server running on server machine

B Export list — specifies local file systems that server exports for
mounting, along with names of machines that are permitted to
mount them

Following a mount request that conforms to its export list, the
server returns a file handle—a key for further accesses

File handle — a file-system identifier, and an inode number to
iIdentify the mounted directory within the exported file system

The mount operation changes only the user’s view and does not
affect the server side

SHANDONG UNIVERSITY o4

NFS Protocol

[1 Provides a set of remote procedure calls for remote file operations.
The procedures support the following operations:

searching for a file within a directory
reading a set of directory entries
manipulating links and directories
accessing file attributes

reading and writing files

[1 NFS servers are stateless; each request has to provide a full set of
arguments

(NFS V4 is available — very different, stateful)

[1 Modifled data must be committed to the server’s disk before results
are returned to the client (lose advantages of caching)

[The NFS protocol does not provide concurrency-control
mechanisms

SHANDONG UNIVERSITY 55

Three Major Layers of NFS Architecture

UNIX file-system interface (based on the open, read,
write, and close calls, and file descriptors)

Virtual File System (VES) layer — distinguishes local
files from remote ones, and local files are further
distinguished according to their file-system types

B The VFS activates file-system-specific operations to handle
local requests according to their file-system types

B Calls the NFS protocol procedures for remote requests

NFS service layer — bottom layer of the architecture
B |mplements the NFS protocol

SHANDONG UNIVERSITY 56

Schematic View of NFS Architecture

client server
system-calls interface
VFS interface — VFS interface
j , 1 l
other types of UNIX file NFS NFS UNIX file
file systems system client server system
RPC/XDR RPC/XDR
disk l T disk
Rl network L_.

SHANDONG UNIVERSITY 57

NFS Path-Name Translation

Performed by breaking the path into
component names and performing a separate
NFS lookup call for every pair of component
name and directory vnode

To make lookup faster, a directory name
lookup cache on the client’s side holds the
vnodes for remote directory names

SHANDONG UNIVERSITY 58

NFS Remote Operations

Nearly one-to-one correspondence between regular
UNIX system calls and the NFS protocol RPCs
(except opening and closing files)

NFS adheres to the remote-service paradigm, but

employs buffering and caching technigques for the
sake of performance

File-blocks cache — when a file is opened, the kernel

checks with the remote server whether to fetch or

revalidate the cached attributes

B Cached file blocks are used only if the corresponding cached
attributes are up to date

File-attribute cache — the attribute cache is updated

whenever new attributes arrive from the server

Clients do not free delayed-write blocks until the
server confirms that the data have been written to disk

SHANDONG UNIVERSITY 959

Example: WAFL File System

Used on Network Appliance “Filers” —
distributed file system appliances

1 “Write-anywhere file layout”
Serves up NES, CIES, http, ftp

Random |/O optimized, write optimized
B NVRAM for write caching

Similar to Berkeley Fast File System, with
extensive modifications

SHANDONG UNIVERSITY

60

The WAFL File Layout

root inode ‘ ‘ \

l

free block map free inode map file in the file system...

inode file

SHANDONG UNIVERSITY 61

Snapshots in WAFL

root inode

(a) Before a snapshot.

root inode new snapshot

/

block A||B||C||D||E

(b) After a snapshot, before any blocks change

root inode new shapshot

/

block A ||B||C||D||E B

(c) After block D has changed to D".

SHANDONG UNIVERSITY

62

11.02

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

SHANDONG UNIVERSITY 63

assignments

11.2 11.4 11.6

SHANDONG UNIVERSITY 64

End of Chapter 11

Any Question?

