
Chapter 11
Fil S t I l t tiFile System Implementation

SHANDONG UNIVERSITY 1

Contents
 File-System Structure
 File-System Implementation File System Implementation
 Directory Implementation
 All ti M th d Allocation Methods
 Free-Space Management
 Efficiency and Performance
 Recovery Recovery
 Log-Structured File Systems
 NFS NFS
 Example: WAFL File System

SHANDONG UNIVERSITY 2

Objectives
 To describe the details of implementing local

file systems and directory structuresfile systems and directory structures
 To describe the implementation of remote file

tsystems
 To discuss block allocation and free-block

algorithms and trade-offs

SHANDONG UNIVERSITY 3

11.1 File-System Structure
 Characteristics that make disks convenient medium
 A disk can be rewritten in place; it is possible to read a block p ; p

from the disk, modify the block, and write it back into the
same place.
F di k di tl i bl k f From a disk, we can access directly any given block of
information it contains.

 OS imposes one or more file systems to allow the OS imposes one or more file systems to allow the
data to be stored, located, and retrieved easily

 A file system poses two design problems: A file system poses two design problems:
 How should the file system look to the user
 How to create algorithms and data structures to map the How to create algorithms and data structures to map the

logical file system onto the physical secondary-storage
devices.

SHANDONG UNIVERSITY 4

File-System Structure
 File structure
 Logical storage unit Logical storage unit
 Collection of related information

 Fil t id d t File system resides on secondary storage
(disks)

 File system organized into layers
 File control block – storage structure File control block storage structure

consisting of information about a file

SHANDONG UNIVERSITY 5

Layered File System

Manages metadata information, FCB will
be needed for each file.

Knows about files and their logical blocks,Knows about files and their logical blocks,
as well as physical blocks.

Issues generic commands to the g
appropriate device driver to read and write

blocks on the disk

Consists of device drivers and interruptConsists of device drivers and interrupt
handlers to transfer information between

memory and disk.

SHANDONG UNIVERSITY 6

File system implementation
 Several on-disk and in-memory structures are used to

implement a file system.p y
 On disk, the file system contains information about

how to boot an OS, total number of blocks, the free , ,
blocks, directory structure, and so on.
 A boot control block
 Volume control block contains partition information—number

of blocks, size of the blocks, free block count and pointers.
UFS: superblock; NTFS: master file tableUFS: superblock; NTFS: master file table.

 A directory structure
 A per file FCB contains many details about the file A per-file FCB contains many details about the file.

SHANDONG UNIVERSITY 7

A Typical File Control Block

SHANDONG UNIVERSITY 8

File system implementation
 In memory
 An in-memory mount table contains information An in-memory mount table contains information

about each mounted volume.
 An in memory directory structure cache holds the An in-memory directory-structure cache holds the

directory information of recently accessed
directoriesdirectories.

 System-wide open-file table contains a pointer of
the FCB of each open file as well as otherthe FCB of each open file, as well as other
information.

 Per-process open-file table contains a pointer to Per-process open-file table contains a pointer to
the appropriate entry in the system-wide open-file
table, as well as other information.

SHANDONG UNIVERSITY 9

table, as well as other information.

In-Memory File System Structures
 The following figure illustrates the necessary

file system structures provided by the operatingfile system structures provided by the operating
systems.

 Figure 12-3(a) refers to opening a file.

 Figure 12 3(b) refers to reading a file Figure 12-3(b) refers to reading a file.

SHANDONG UNIVERSITY 10

In-Memory File System Structures

SHANDONG UNIVERSITY 11

Create, open, use and close a file
 Create a new file:

 Locate a new FCB
 Read appropriate directory into memory
 Update it with the new file name and FCB
 Write it back to the disk Write it back to the disk

 Open a file
 Find the file Find the file
 Copy the FCB to a system-wide open-file table in memory
 Made an entry in the per-process open-file table
 Return a pointer to the entry in the per-process open-file table

 File descriptor in Unix
 File handler in Windows File handler in Windows

SHANDONG UNIVERSITY 12

Create, open, use and close a file
 Use
 All operations are performed via the file pointer All operations are performed via the file pointer

 Close a file
 The entry in per-process open-file table is

removed
 Open count in system-wide open-file table is

decremented. If the open count is 0, then the
t i dentry is removed

SHANDONG UNIVERSITY 13

Partitions and Mounting
 Each partition can be raw or cooked
 SwapSwap

 Boot information can be stored in a separate
partitionpartition.

 System can be dual-booted
 A boot loader is needed A boot loader is needed.
 BootManager bootstar 8.3，
 Linux GRUB GRUB - GRand Unified Bootloader Linux GRUB, GRUB - GRand Unified Bootloader

 Root partition contains the OS kernel and
sometimes other system filessometimes other system files.

 mounting

SHANDONG UNIVERSITY 14

Virtual File Systems
 Virtual File Systems (VFS) provide an object-

oriented way of implementing file systemsoriented way of implementing file systems.

 VFS allows the same system call interface (the
API) to be used for different types of file
systems.

 The API is to the VFS interface, rather than
ifi t f fil tany specific type of file system.

SHANDONG UNIVERSITY 15

Schematic View of Virtual File System

SHANDONG UNIVERSITY 16

Virtual File System
 VFS layer serves two functions:
 It separates file-system-generic operations from their p y g p

implementation by defining a clean VFS interface.
 The VFS provides a mechanism for uniquely representing a

fil th h t t k b d VNODEfile throughout a network, based on VNODE.

 具体来说，VFS提供以下功能
记 用的文件系统类型 •记录可用的文件系统类型；

 •把文件系统与对应的存储设备联系起来；

 处理面向文件的通用操作 •处理面向文件的通用操作；

 •涉及具体文件系统的操作时，把它们映射到相关的具体文件
系统。系统。

SHANDONG UNIVERSITY 17

Linux VFS

SHANDONG UNIVERSITY 18

Directory Implementation
 Linear list of file names with pointer to the

data blocksdata blocks.
 simple to program
 time cons ming to e ec te time-consuming to execute

 H h T bl li li t ith h h d t Hash Table – linear list with hash data
structure.
 decreases directory search time
 collisions – situations where two file names hash

to the same location
 fixed size

SHANDONG UNIVERSITY 19

Hash table
目目目

Hash函数

f
键键

SHANDONG UNIVERSITY 20

11.4 Allocation Methods
 An allocation method refers to how disk blocks

are allocated for files:are allocated for files:

 Contiguous allocation

 Linked allocation

 Indexed allocation

SHANDONG UNIVERSITY 21

Contiguous Allocation
 Each file occupies a set of contiguous blocks

on the diskon the disk

SHANDONG UNIVERSITY 22

Contiguous Allocation
 Mapping from logical to physical

Block to be accessed = i + starting addressg

SHANDONG UNIVERSITY 23

Contiguous Allocation of Disk Space
 Characteristic
 Simple – only starting location (block #) and length Simple – only starting location (block #) and length

(number of blocks) are required
 Random access Random access
 Wasteful of space (dynamic storage-allocation

problem)problem)
 Files cannot grow

SHANDONG UNIVERSITY 24

Extent-Based Systems
 Many newer file systems (I.e. Veritas File

System) use a modified contiguous allocationSystem) use a modified contiguous allocation
scheme

 Extent-based file systems allocate disk blocks
in extents

 An extent is a contiguous block of disks
E ll d f fil ll i Extents are allocated for file allocation

 A file consists of one or more extents.

SHANDONG UNIVERSITY 25

Linked Allocation
 Each file is a linked list of disk blocks: blocks

may be scattered anywhere on the diskmay be scattered anywhere on the disk.

pointerblock =

SHANDONG UNIVERSITY 26

Linked Allocation

SHANDONG UNIVERSITY 27

Linked Allocation (Cont.)
 Advantages：

 Simple – need only starting address
 Free-space management system – no waste of space

 Disadvantages
 No random access
 Pointers takes space
 reliability LA/511
 reliability

 Mapping
R

Block to be accessed is the Qth block in the linked chain of
blocks representing the file.
Displacement into block = R + 1

File-allocation table (FAT) – disk-space allocation used by MS-DOS
and OS/2.

SHANDONG UNIVERSITY 28

File-Allocation Table
 每个分区的开始部分用于存储该分区FAT表。

 每个磁盘块在该表中有一项，该表可以通过块号来索引。每个磁盘块在该表中有 项，该表可以通过块号来索引

 目录条目中含有文件首块的块号码。根据块号码索引的
FAT条目包含文件下一块的块号码。这种链会一直继续

该 应 条 为文件 未到最后一块，该块对应FAT条目的值为文件结束值。未
使用的块用0值来表示。

 为文件分配 个新的块只要简单地找到第 个值为0的 为文件分配一个新的块只要简单地找到第一个值为0的
FAT条目，用新块的地址替换前面文件结束值，用文件
结束值替代0。结束值替代0。

 如果不对FAT采用缓存，FAT分配方案可能导致大量的磁
头寻道时间。但通过读入FAT信息，磁盘能找到任何块头寻道时间 但通过读入 信息，磁盘能找到任何块
的位置，从而实现随机访问。

SHANDONG UNIVERSITY 29

File-Allocation Table

SHANDONG UNIVERSITY 30

Indexed Allocation
 Brings all pointers together into the index block.
 Logical view Logical view.

index table

SHANDONG UNIVERSITY 31

Example of Indexed Allocation

SHANDONG UNIVERSITY 32

Indexed Allocation (Cont.)
 Need index table
 Random access
 Dynamic access without external fragmentation, but have

overhead of index block.
 Mapping from logical to physical in a file of maximum size

of 256K words and block size of 512 words. We need only
1 block for index table.

SHANDONG UNIVERSITY 33

Indexed Allocation – Mapping (Cont.)
 Mapping from logical to physical in a file of

unbounded length (block size of 512 words).unbounded length (block size of 512 words).
 Linked scheme – Link blocks of index table (no

limit on size)limit on size).
 Two-level index (maximum file size ？)

SHANDONG UNIVERSITY 34

Indexed Allocation – Mapping (Cont.)



outer-index

index table file

SHANDONG UNIVERSITY 35

Combined Scheme: UNIX (4K bytes per block)
 15 pointers
 12 direct pointers
 1 single indirect pointer
 1 double indirect pointer
 1 triple indirect pointer

SHANDONG UNIVERSITY 36

11.5 Free-Space Management
 Bit vector (n blocks)

0 1 2 n-1

…

 1  block[i] free
bit[i] =



 1  block[i] free

0  block[i] occupied

Block number calculation

(number of bits per word) *(p)
(number of 0-value words) +
offset of first 1 bit

SHANDONG UNIVERSITY 37

Free-Space Management (Cont.)
 Bit map requires extra space
 Example: Example:

block size = 212 bytes
disk size = 230 bytes (1 gigabyte)
n = 230/212 = 218 bits (or 32K bytes)n 2 /2 2 bits (or 32K bytes)

 Easy to get contiguous files

SHANDONG UNIVERSITY 38

Free-Space Management (Cont.)
 Linked list (free list)
 No waste of spacep
 Cannot get contiguous space easily
 Long time to find large number of free blocks

 Grouping
 To store the addresses of n free blocks in the first block.
 The last block contains the addresses of another n free

blocks.
 The addresses of large number of free blocks can be found

quickly.
 Counting Counting
 To keep the address of the first block, and the number n of

free contiguous blocks that follow the first one

SHANDONG UNIVERSITY 39

free contiguous blocks that follow the first one.

Free-Space Management (Cont.)
 Need to protect:
 Pointer to free list Pointer to free list
 Bit map
 Must be kept on disk Must be kept on disk
 Copy in memory and disk may differ
 Cannot allow for block[i] to have a situation where bit[i] Cannot allow for block[i] to have a situation where bit[i]

= 1 in memory and bit[i] = 0 on disk
 Solution: Solution:
 Set bit[i] = 1 in disk
 Allocate block[i] Allocate block[i]
 Set bit[i] = 1 in memory

SHANDONG UNIVERSITY 40

Linked Free Space List on Disk

SHANDONG UNIVERSITY 41

11.6 Efficiency and Performance
 Efficiency dependent on:
 disk allocation and directory algorithmsdisk allocation and directory algorithms
 i-node

 types of data kept in file’s directory entryyp p y y
 pointers

 Performance
 disk cache – separate section of main memory for

frequently used blocks
 free-behind and read-ahead – techniques to

ti i ti loptimize sequential access
 improve PC performance by dedicating section of

memory as virtual disk or RAM disk
SHANDONG UNIVERSITY 42

memory as virtual disk, or RAM disk

Page Cache
 A page cache caches pages rather than disk

blocks using virtual memory techniquesblocks using virtual memory techniques

 Memory-mapped I/O uses a page cache

 Routine I/O through the file system uses the
buffer (disk) cachebuffer (disk) cache

 This leads to the following figure

SHANDONG UNIVERSITY 43

I/O Without a Unified Buffer Cache

SHANDONG UNIVERSITY 44

Unified Buffer Cache
 In Unix and Linux, a unified buffer cache uses

the same page cache to cache both memory-the same page cache to cache both memory
mapped pages and ordinary file system I/O

SHANDONG UNIVERSITY 45

I/O Using a Unified Buffer Cache

SHANDONG UNIVERSITY 46

11.7 Recovery
 Consistency checking – compares data in

directory structure with data blocks on diskdirectory structure with data blocks on disk,
and tries to fix inconsistencies
 UNIX fsck UNIX—fsck
 MS-DOS--chkdsk

 Use system programs to back up data from
disk to another storage device (floppy disk,
magnetic tape, other magnetic disk, optical)

 Recover lost file or disk by restoring data from
backup

SHANDONG UNIVERSITY 47

backup

11.8 Log Structured File Systems
 Log structured (or journaling) file systems record

each update to the file system as a transaction

 All transactions are written to a log
 A transaction is considered committed once it is written to A transaction is considered committed once it is written to

the log
 However, the file system may not yet be updated

 The transactions in the log are asynchronously written
to the file systemto the file system
 When the file system is modified, the transaction is removed

from the log

 If the file system crashes, all remaining transactions in
the log must still be performed

SHANDONG UNIVERSITY 48

the log must still be performed

The Sun Network File System (NFS)
 An implementation and a specification of a

software system for accessing remote filessoftware system for accessing remote files
across LANs (or WANs)

 The implementation is part of the Solaris and
S OS SSunOS operating systems running on Sun
workstations using an unreliable datagram
protocol (UDP/IP protocol and Ethernet)

SHANDONG UNIVERSITY 49

NFS (Cont.)
 Interconnected workstations viewed as a set of

independent machines with independent file systems,
which allows sharing among these file systems in awhich allows sharing among these file systems in a
transparent manner
 A remote directory is mounted over a local file system

di tdirectory
 The mounted directory looks like an integral subtree of the

local file system, replacing the subtree descending from the
l l di tlocal directory

 Specification of the remote directory for the mount operation
is nontransparent; the host name of the remote directory has
t b id dto be provided
 Files in the remote directory can then be accessed in a

transparent manner
 Subject to access-rights accreditation, potentially any file

system (or directory within a file system), can be mounted
remotely on top of any local directory

SHANDONG UNIVERSITY 50

NFS (Cont.)
 NFS is designed to operate in a heterogeneous

environment of different machines, operating systems,
d k hi h NFS ifi iand network architectures; the NFS specifications

independent of these media

 This independence is achieved through the use of
RPC primitives built on top of an External DataRPC primitives built on top of an External Data
Representation (XDR) protocol used between two
implementation-independent interfacesp p

 The NFS specification distinguishes between the
services provided by a mount mechanism and the
actual remote-file-access services

SHANDONG UNIVERSITY 51

Three Independent File Systems

SHANDONG UNIVERSITY 52

Mounting in NFS

SHANDONG UNIVERSITY 53

NFS Mount Protocol
 Establishes initial logical connection between server and client
 Mount operation includes name of remote directory to be mounted

and name of server machine storing itand name of server machine storing it
 Mount request is mapped to corresponding RPC and forwarded to

mount server running on server machine
 Export list – specifies local file systems that server exports for

mounting, along with names of machines that are permitted to
mount them

 Following a mount request that conforms to its export list, the
server returns a file handle—a key for further accesses

 File handle – a file-system identifier, and an inode number to File handle a file system identifier, and an inode number to
identify the mounted directory within the exported file system

 The mount operation changes only the user’s view and does not
affect the server sideaffect the server side

SHANDONG UNIVERSITY 54

NFS Protocol
 Provides a set of remote procedure calls for remote file operations.

The procedures support the following operations:
 searching for a file within a directory searching for a file within a directory
 reading a set of directory entries
 manipulating links and directories
 accessing file attributes
 reading and writing files

 NFS servers are stateless; each request has to provide a full set of NFS servers are stateless; each request has to provide a full set of
arguments

(NFS V4 is available – very different, stateful)
 Modified data m st be committed to the ser er’s disk before res lts Modified data must be committed to the server’s disk before results

are returned to the client (lose advantages of caching)
 The NFS protocol does not provide concurrency-control

mechanisms

SHANDONG UNIVERSITY 55

Three Major Layers of NFS Architecture
 UNIX file-system interface (based on the open, read,

write, and close calls, and file descriptors), , p)

 Virtual File System (VFS) layer – distinguishes local y () y g
files from remote ones, and local files are further
distinguished according to their file-system types
 The VFS activates file-system-specific operations to handle

local requests according to their file-system types
C S f Calls the NFS protocol procedures for remote requests

 NFS service layer bottom layer of the architecture NFS service layer – bottom layer of the architecture
 Implements the NFS protocol

SHANDONG UNIVERSITY 56

Schematic View of NFS Architecture

SHANDONG UNIVERSITY 57

NFS Path-Name Translation
 Performed by breaking the path into

component names and performing a separatecomponent names and performing a separate
NFS lookup call for every pair of component
name and directory vnodename and directory vnode

 f To make lookup faster, a directory name
lookup cache on the client’s side holds the
vnodes for remote directory names

SHANDONG UNIVERSITY 58

NFS Remote Operations
 Nearly one-to-one correspondence between regular

UNIX system calls and the NFS protocol RPCs
(except opening and closing files)(except opening and closing files)

 NFS adheres to the remote-service paradigm, but
employs buffering and caching techniques for the p y g g q
sake of performance

 File-blocks cache – when a file is opened, the kernel
checks with the remote server whether to fetch orchecks with the remote server whether to fetch or
revalidate the cached attributes
 Cached file blocks are used only if the corresponding cached y p g

attributes are up to date
 File-attribute cache – the attribute cache is updated

whenever new attributes arrive from the serverwhenever new attributes arrive from the server
 Clients do not free delayed-write blocks until the

server confirms that the data have been written to disk

SHANDONG UNIVERSITY 59

Example: WAFL File System
 Used on Network Appliance “Filers” –

distributed file system appliancesdistributed file system appliances
 “Write-anywhere file layout”
 Serves up NFS, CIFS, http, ftp
 Random I/O optimized, write optimizeda do /O opt ed, te opt ed
 NVRAM for write caching

 Similar to Berkeley Fast File System with Similar to Berkeley Fast File System, with
extensive modifications

SHANDONG UNIVERSITY 60

The WAFL File Layout

SHANDONG UNIVERSITY 61

Snapshots in WAFL

SHANDONG UNIVERSITY 62

11.02

SHANDONG UNIVERSITY 63

assignments
 11.2 11.4 11.6

SHANDONG UNIVERSITY 64

End of Chapter 11End of Chapter 11

Any Question?

