
Chapter 2

Operating System Structures

SHANDONG UNIVERSITY 2

Contents
 Operating System Services
 User Operating System Interface
 System Calls
 Types of System Calls
 System Programs
 Operating System Design and Implementation
 Operating System Structure
 Virtual Machines
 Operating System Generation
 System Boot

SHANDONG UNIVERSITY 3

 In this chapter, we will view an operating
system from several vantage points:
 One view focuses on the services that the system

provides
 Another is on the interface that it makes available

to users and programmers
 A third is on its components and their

interconnections.
 Showing the viewpoints of users, programmers,

and operating-system designers

SHANDONG UNIVERSITY 4

Objectives
 To describe the services an operating system

provides to users, processes, and other
systems

 To discuss the various ways of structuring an
operating system

 To explain how operating systems are installed
and customized and how they boot

SHANDONG UNIVERSITY 5

Operating System Services
 User interface - Almost all operating systems have a

user interface (UI)
 Varies between Command-Line (CLI), Graphics User

Interface (GUI), Batch
 Program execution - The system must be able to load

a program into memory and to run that program, end
execution, either normally or abnormally (indicating
error)

 I/O operations - A running program may require I/O,
which may involve a file or an I/O device.

 File-system manipulation - The file system is of
particular interest. Obviously, programs need to read
and write files and directories, create and delete them,
search them, list file Information, permission
management.

SHANDONG UNIVERSITY 6

Operating System Services (Cont.)
 One set of operating-system services provides

functions that are helpful to the user (Cont):
 Communications – Processes may exchange information, on

the same computer or between computers over a network
 Communications may be via shared memory or through

message passing (packets moved by the OS)
 Error detection – OS needs to be constantly aware of

possible errors
 May occur in the CPU and memory hardware, in I/O devices,

in user program
 For each type of error, OS should take the appropriate

action to ensure correct and consistent computing
 Debugging facilities can greatly enhance the user’s and

programmer’s abilities to efficiently use the system

SHANDONG UNIVERSITY 7

Operating System Services (Cont.)
 Another set of OS functions exists for ensuring the efficient

operation of the system itself via resource sharing
 Resource allocation - When multiple users or multiple jobs

running concurrently, resources must be allocated to each of them
 Many types of resources - Some (such as CPU cycles, main memory,

and file storage) may have special allocation code, others (such as I/O
devices) may have general request and release code.

 Accounting - To keep track of which users use how much and
what kinds of computer resources

 Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use
of that information, concurrent processes should not interfere with
each other
 Protection involves ensuring that all access to system resources is

controlled
 Security of the system from outsiders requires user authentication,

extends to defending external I/O devices from invalid access attempts
 If a system is to be protected and secure, precautions must be

instituted throughout it. A chain is only as strong as its weakest link.

SHANDONG UNIVERSITY 8

User Operating System Interface - CLI
CLI allows direct command entry

 Sometimes implemented in kernel, sometimes by
systems program

 Sometimes multiple flavors implemented – shells
 Primarily fetches a command from user and executes it
 Sometimes commands built-in, sometimes just names of

programs
 If the latter, adding new features doesn’t require shell

modification

SHANDONG UNIVERSITY 9

User Operating System Interface - GUI
 User-friendly desktop metaphor interface
 Usually mouse, keyboard, and monitor
 Icons represent files, programs, actions, etc.
 Various mouse buttons over objects in the interface cause

various actions (provide information, options, execute
function, open directory (known as a folder)

 Invented at Xerox PARC
 Many systems now include both CLI and GUI

interfaces
 Microsoft Windows is GUI with CLI “command” shell
 Apple Mac OS X as “Aqua” GUI interface with UNIX kernel

underneath and shells available
 Solaris is CLI with optional GUI interfaces (Java Desktop,

KDE)
 Linux

SHANDONG UNIVERSITY 10

System Calls
 Programming interface to the services provided by the OS
 It is the interface between applications and OS, it can make user

use all the functions without knowing the structure of OS and
hardwares, so it can protect the system and improve efficiency.

 Typically written in a high-level language (C or C++)
 Mostly accessed by programs via a high-level Application

Program Interface (API) rather than direct system call use
 Three most common APIs are Win32 API for Windows, POSIX API

for POSIX-based systems (including virtually all versions of UNIX,
Linux, and Mac OS X), and Java API for the Java virtual machine
(JVM)

 Why use APIs rather than system calls?
 The program to compile and run on any system that supports the

same API
 Actual systems calls can often be more detailed and difficult to

work with

(Note that the system-call names used throughout this text are generic)

SHANDONG UNIVERSITY 11

Example of System Calls
 System call sequence to copy the contents of

one file to another file

SHANDONG UNIVERSITY 12

Example of Standard API
 Consider the ReadFile() function in the Win32 API—a function for reading

from a file

 A description of the parameters passed to ReadFile()
 HANDLE file—the file to be read
 LPVOID buffer—a buffer where the data will be read into and written from
 DWORD bytesToRead—the number of bytes to be read into the buffer
 LPDWORD bytesRead—the number of bytes read during the last read
 LPOVERLAPPED ovl—indicates if overlapped I/O is being used

SHANDONG UNIVERSITY 13

System Call Implementation
 Typically, a number associated with each system call
 System-call interface maintains a table indexed according to

these numbers
 The system call interface invokes intended system call

in OS kernel and returns status of the system call and
any return values

 The caller need know nothing about how the system
call is implemented
 Just needs to obey API and understand what OS will do as a

result call
 Most details of OS interface hidden from programmer by

API
 Managed by run-time support library (set of functions built

into libraries included with compiler)

SHANDONG UNIVERSITY 14

API – System Call – OS Relationship

SHANDONG UNIVERSITY 15

Standard C Library Example
 C program invoking printf() library call, which

calls write() system call

SHANDONG UNIVERSITY 16

System Call Parameter Passing
 Often, more information is required than simply

identity of desired system call
 Exact type and amount of information vary according to OS

and call
 Three general methods used to pass parameters to

the OS
 Simplest: pass the parameters in registers
 In some cases, may be more parameters than registers

 Parameters stored in a block, or table, in memory, and
address of block passed as a parameter in a register
 This approach taken by Linux and Solaris

 Parameters placed, or pushed, onto the stack by the
program and popped off the stack by the operating system

 Block and stack methods do not limit the number or length of
parameters being passed

SHANDONG UNIVERSITY 17

Parameter Passing via Table

SHANDONG UNIVERSITY 18

Types of System Calls
 Process control
 File management
 Device management
 Information maintenance
 Communications

SHANDONG UNIVERSITY 19

Process control
 End, abort
 Load, execute
 Create process, terminate process
 Get process attributes, set process attributes
 Wait for time
 Wait event, signal event
 Allocate and free memory

SHANDONG UNIVERSITY 20

MS-DOS execution

SHANDONG UNIVERSITY 21

FreeBSD Running Multiple Programs
 The shell executes a system call-fork().
 The selected program is loaded into memory via an exec() system call.

SHANDONG UNIVERSITY 22

File management
 Create file, delete file
 Open, close
 Read, write, reposition
 Get file attributes, set file attributes

SHANDONG UNIVERSITY 23

File management
open 打开文件

creat 创建新文件

close 关闭文件描述字

read 读文件

write 写文件

readv 从文件读入数据到缓冲数组中

writev 将缓冲数组里的数据写入文件

pread 对文件随机读

pwrite 对文件随机写

lseek 移动文件指针

SHANDONG UNIVERSITY 24

Device management
 Request device, release device
 Read, write, reposition
 Get device attributes, set device attributes
 Logically attach or detach devices

SHANDONG UNIVERSITY 25

Information maintenance
 Get time or date, set time or date
 Get system data, set system data
 Get process, file, or devices attributes
 Set process, file or device attributes

SHANDONG UNIVERSITY 26

System calls for info. Maintenance in Linux
sysinfo 取得系统信息

adjtimex 调整系统时钟

alarm 设置进程的闹钟

getitimer 获取计时器值

setitimer 设置计时器值

gettimeofday 取时间和时区

settimeofday 设置时间和时区

stime 设置系统日期和时间

time 取得系统时间

SHANDONG UNIVERSITY 27

Communications
 Functions
 Create, delete communication connection
 Send, receive message
 Transfer status information
 Attach or detach remote devices

 Models
 Message-passing model
 Shared memory model

SHANDONG UNIVERSITY 28

Communications

SHANDONG UNIVERSITY 29

System Programs

SHANDONG UNIVERSITY 30

System Programs
 Software can be split into two main types -

system software and application software or
application programs. System software is any
software required to support the production or
execution of application programs but which is
not specific to any particular application.
Examples of system software would include
the operating system, compilers, editors and
sorting programs.

SHANDONG UNIVERSITY 31

System Programs
 System programs provide a convenient environment

for program development and execution. They can be
divided into:
 File manipulation
 Status information
 File modification
 Programming language support
 Program loading and execution
 Communications

 Most users’ view of the operation system is defined by
system programs, not the actual system calls

SHANDONG UNIVERSITY 32

System Programs
 Provide a convenient environment for program

development and execution
 Some of them are simply user interfaces to system calls;

others are considerably more complex
 File management - Create, delete, copy, rename, print,

dump, list, and generally manipulate files and
directories

 Status information
 Some ask the system for info - date, time, amount of

available memory, disk space, number of users
 Others provide detailed performance, logging, and

debugging information
 Typically, these programs format and print the output to the

terminal or other output devices
 Some systems implement a registry - used to store and

retrieve configuration information

SHANDONG UNIVERSITY 33

System Programs (cont’d)
 File modification

 Text editors to create and modify files
 Special commands to search contents of files or perform

transformations of the text
 Programming-language support - Compilers, assemblers,

debuggers and interpreters sometimes provided
 Program loading and execution- Absolute loaders, relocatable

loaders, linkage editors, and overlay-loaders, debugging systems
for higher-level and machine language

 Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems
 Allow users to send messages to one another’s screens, browse

web pages, send electronic-mail messages, log in remotely,
transfer files from one machine to another

SHANDONG UNIVERSITY 34

Operating System Design and Implementation
 Design and Implementation of OS not “solvable”, but

some approaches have proven successful
 Internal structure of different Operating Systems can

vary widely
 Start by defining goals and specifications
 Affected by choice of hardware, type of system
 User goals and System goals
 User goals – operating system should be convenient to use,

easy to learn, reliable, safe, and fast
 System goals – operating system should be easy to design,

implement, and maintain, as well as flexible, reliable, error-
free, and efficient

SHANDONG UNIVERSITY 35

Operating System Design and Implementation

 Important principle to separate
Policy: What will be done?
Mechanism: How to do it?

 Mechanisms determine how to do something,
policies decide what will be done
 The separation of policy from mechanism is a very

important principle, it allows maximum flexibility if
policy decisions are to be changed later

SHANDONG UNIVERSITY 36

Implementation
 Assembly language
 Family of CPUs

 Master Control Program (MCP)---ALGOL
 MULTICS---PL/1
 C or C++
 Family of CPUs
 Reduced speed, increased storage

SHANDONG UNIVERSITY 37

Operating System Structure
 Simple structure
 Layered approach
 Microkernel
 Modules

SHANDONG UNIVERSITY 38

Simple Structure
 MS-DOS – written to provide the most

functionality in the least space
 Not divided into modules
 Although MS-DOS has some structure, its

interfaces and levels of functionality are not well
separated

SHANDONG UNIVERSITY 39

MS-DOS Layer Structure

SHANDONG UNIVERSITY 40

Layered Approach
 The operating system is divided into a number

of layers (levels), each built on top of lower
layers. The bottom layer (layer 0), is the
hardware; the highest (layer N) is the user
interface.

 With modularity, layers are selected such that
each uses functions (operations) and services
of only lower-level layers

SHANDONG UNIVERSITY 41

Layered Operating System

SHANDONG UNIVERSITY 42

UNIX
 UNIX – limited by hardware functionality, the

original UNIX operating system had limited
structuring. The UNIX OS consists of two
separable parts
 Systems programs
 The kernel
 Consists of everything below the system-call interface

and above the physical hardware
 Provides the file system, CPU scheduling, memory

management, and other operating-system functions; a
large number of functions for one level

SHANDONG UNIVERSITY 43

UNIX System Structure

SHANDONG UNIVERSITY 44

Microkernel System Structure
 Moves as much from the kernel into “user” space
 Communication takes place between user modules

using message passing
 Benefits:
 Easier to extend OS
 Easier to port the operating system to new architectures
 More reliable (less code is running in kernel mode)
 More secure

 Detriments:
 Performance overhead of user space to kernel space

communication

SHANDONG UNIVERSITY 45

Modules
 Most modern operating systems implement

kernel modules
 Uses object-oriented approach
 Each core component is separate
 Each talks to the others over known interfaces
 Each is loadable as needed within the kernel

 Overall, similar to layers but with more flexible

SHANDONG UNIVERSITY 46

Solaris Modular Approach

SHANDONG UNIVERSITY 47

Mac OS X Structure

SHANDONG UNIVERSITY 48

Virtual Machines
 A virtual machine takes the layered approach

to its logical conclusion. It treats hardware and
the operating system kernel as though they
were all hardware

 A virtual machine provides an interface
identical to the underlying bare hardware

 The operating system creates the illusion of
multiple processes, each executing on its own
processor with its own (virtual) memory

SHANDONG UNIVERSITY 49

Virtual Machines (Cont.)
 The resources of the physical computer are

shared to create the virtual machines
 CPU scheduling can create the appearance that

users have their own processor
 Spooling and a file system can provide virtual card

readers and virtual line printers
 A normal user time-sharing terminal serves as the

virtual machine operator’s console

SHANDONG UNIVERSITY 50

Virtual Machines (Cont.)

SHANDONG UNIVERSITY 51

Virtual Machines (Cont.)
 The virtual-machine concept provides complete

protection of system resources since each virtual
machine is isolated from all other virtual machines.
This isolation, however, permits no direct sharing of
resources.

 A virtual-machine system is a perfect vehicle for
operating-systems research and development.
System development is done on the virtual machine,
instead of on a physical machine and so does not
disrupt normal system operation.

 The virtual machine concept is difficult to implement
due to the effort required to provide an exact duplicate
to the underlying machine

SHANDONG UNIVERSITY 52

VMware Architecture

SHANDONG UNIVERSITY 53

The Java Virtual Machine

SHANDONG UNIVERSITY 54

SHANDONG UNIVERSITY 55

Operating System Generation
 Operating systems are designed to run on any

of a class of machines; the system must be
configured for each specific computer site

 SYSGEN program obtains information
concerning the specific configuration of the
hardware system

SHANDONG UNIVERSITY 56

System Boot
 Booting – starting a computer by loading the kernel
 Bootstrap program – code stored in ROM that is able

to locate the kernel, load it into memory, and start its
execution

 Operating system must be made available to
hardware so hardware can start it
 Small piece of code – bootstrap loader, locates the kernel,

loads it into memory, and starts it
 Sometimes two-step process where boot block at fixed

location loads bootstrap loader
 When power initialized on system, execution starts at a fixed

memory location
 Firmware used to hold initial boot code

SHANDONG UNIVERSITY 57

Assignments
 2.3, 2.8, 2.12

End of Chapter 2

Any Question?

	Chapter 2
	Contents
	幻灯片编号 3
	Objectives
	Operating System Services
	Operating System Services (Cont.)
	Operating System Services (Cont.)
	User Operating System Interface - CLI
	User Operating System Interface - GUI
	System Calls
	Example of System Calls
	Example of Standard API
	System Call Implementation
	API – System Call – OS Relationship
	Standard C Library Example
	System Call Parameter Passing
	Parameter Passing via Table
	Types of System Calls
	Process control
	MS-DOS execution
	FreeBSD Running Multiple Programs
	File management
	File management
	Device management
	Information maintenance
	System calls for info. Maintenance in Linux
	Communications
	Communications
	System Programs
	System Programs
	System Programs
	System Programs
	System Programs (cont’d)
	Operating System Design and Implementation
	Operating System Design and Implementation
	Implementation
	Operating System Structure
	Simple Structure
	MS-DOS Layer Structure
	Layered Approach
	Layered Operating System
	UNIX
	UNIX System Structure
	Microkernel System Structure
	Modules
	Solaris Modular Approach
	Mac OS X Structure
	Virtual Machines
	Virtual Machines (Cont.)
	Virtual Machines (Cont.)
	Virtual Machines (Cont.)
	VMware Architecture
	The Java Virtual Machine
	幻灯片编号 54
	Operating System Generation
	System Boot
	Assignments
	End of Chapter 2

