Chapter 3

Processes

A | | o ¢ 28 g
s T e | o RSN ; '1_'.“ S e
FE T 2t et e e | | i = ity e g mAAME ELE #‘ | -

L bl e l, LII- .-_______ h | - =N — ot Frmtil {Hry ks TR
; _'—"-T? rTorls i'._a.__"z}_;‘_! j t i lkt_'l- L e :— .[:'"r' ! I
- EEIISIIITIIOEN T —

(0 Y o YR o Y o O

Process Concept

Process Scheduling

Operations on Processes

Interprocesses Communication
Examples of IPC Systems
Communication in Client-Server Systems

SHANDONG UNIVERSITY

To Iintroduce the notion of a process---a
program in execution, which forms the basis of
all computation

To describe the various features of processes,
including scheduling, creation and termination,
and communication.

To describe communications In client-server
systems

SHANDONG UNIVERSITY 3

Process Concept

An operating system executes a variety of programs:
B Batch system — jobs
B Time-shared systems — user programs or tasks

Textbook uses the terms job and process almost
Interchangeably

Process — a program in execution; process execution
must progress in sequential fashion

A process includes:
B Textsection

B program counter
B stack

B data section

SHANDONG UNIVERSITY 4

Process in Memory

max
stack

l

heap

data

text

SHANDONG UNIVERSITY 5

Process State

As a process executes, it changes state
B new: The process is being created
B running: Instructions are being executed

B waiting: The process is waiting for some event to
occur

B ready: The process is waiting to be assigned to a
processor

B terminated: The process has finished execution

SHANDONG UNIVERSITY 6

Diagram of Process State

admitted

interrupt exit terminated

scheduler dispatch

I/O or event completion I/O or event wait

waiting

SHANDONG UNIVERSITY 7

Diagram of Process State

- % il
-) X VR e B
R Activate Dispatch
eady, Ready - : Release
S d
i Suspend Timeout
B i)
Event ZHH4 Event E{}
Oceurs jg fz Z Event 4%
. Wait 2
53]

B kcd Activate
suspend
Suspend
e

SHANDONG UNIVERSITY 8

Process Control Block (PCB)

In order to manage processes, OS defines a data
structure for each process to record the process’s
characteristics, and describe the change.

Information associated with each process

Process state

Process number

Program counter

CPU registers

CPU scheduling information
Memory-management information
Accounting information

/O status information

SHANDONG UNIVERSITY

Process Control Block (PCB)

process state

process number

program counter

registers

memory limits

list of open files

SHANDONG UNIVERSITY 10

CPU Switch From Process to Process

process P, operating system process P,
interrupt or system call
executing ;L /—
Y -~
T save state into PCB,
> idle
reload state from PCB, 1
-idle interrupt or system call executing
h 4 \ ; ~
save state into PCB;
> idle
) reload state from PCB, J
executing | _¥
- v _ @ e~

SHANDONG UNIVERSITY 11

PCB of Linux

The PCB In Linux is represented by the C structure task struct.

This structure contains information for representing a process, including
the state of the process, scheduling, and memory management
Information, list of open files, and pointers to the process’s parent
and any of its children.

Struct task_struct{
B /*task state */
Volatile long state; //EE X task BITHVRTES, URES
struct linux_binfmt *binfmt;
Int exit_code, exit_signal;
int pdeath_signal; /* The signal sent when the parent dies */
I EXFEEWA RS, APHZFETZHY
unsigned long personality;
int dumpable:1;
int did_exec:1,
pid_t pid; //process identifier
Long state; //state of the process
pid_t pgrp;
pid ttty old pgrp;
pid_t session;

SHANDONG UNIVERSITY 12

PCB of Linux

/* boolean value for session group leader */

=& Rk
Int leader;
/*

* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with

* p->p_pptr->pid)

*/

RFHARH— LIRS

struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr,

/* PID hash table linkage. */

HE I E R H—hash &

struct task_struct *pidhash_next;
struct task_struct *pidhash_pprev;

SHANDONG UNIVERSITY 13

PCB of Linux

O00 O000O000000000O0OO

[* Pointer to task[] array linkage. */

struct task_struct **tarray_ptr;

struct wait_queue *wait_chldexit; /* for wait4() 5\ */

struct semaphore *vfork_sem; /* for vfork() */

unsigned long policy, rt_priority;

unsigned long it_real value, it_prof value, it virt value;

HIEN M RE AL A RS ERAEN AR EEZE N — MU EEEX T
THEHEN—LREER

unsigned long it_real incr, it_prof _incr, it_virt_incr;

struct timer_list real timer;

struct tms times;

unsigned long start_time;

long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS]://ZE X T B8] F B K 2)s
/* mm fault and swap info: this can arguably be seen as either mm-specific or
thread-specific */

NEFER

unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;

int swappable:1;

SHANDONG UNIVERSITY 14

PCB of Linux

OO00000000O00O0000 O

[* process credentials */

uid_t uid,euid,suid,fsuid;

gid t gid,eqid,sgid,fsgid;

Int ngroups;

gid_t groups[NGROUPS];

kernel cap tcap effective, cap inheritable, cap permitted,;
struct user_struct *user;

* limits */

struct rlimit rlim[RLIM_NLIMITS];
unsigned short used math;

char comm|[16];

[* file system info */

int link_count;

struct tty struct *tty; /* NULL if no tty */
[* ipc stuff */

SHANDONG UNIVERSITY

15

PCB of Linux

OO0000O00O0O0OO0OO0O0000O00O00O00O0O0OO

struct sem_undo *semundo;

struct sem_queue *semsleeping;

/* tss for this task */

struct thread_struct tss;

/* filesystem information */

struct fs_struct *fs;

[* open file information */

struct files_struct *files; //list of open files

[* memory management info */

struct mm_struct *mm; //address space of this process

[* signal handlers */

spinlock t sigmask lock; /* Protects signal and blocked */
struct signal_struct *sig;

sigset_t signal, blocked;

struct signal_queue *sigqueue, **sigqueue _tail;

unsigned long sas ss_sp;

Size tsas Ss Size;

h

SHANDONG UNIVERSITY

16

Li nux EFERVIRTS

TASK _RUNNING AIiZ1T

TASK INTERRUPTIBLE AJHRHRIZEFFIRTS
TASK_UNINTERRUPTIBLE ASR]RHTHIFRIRGS
TASK ZOMBIE {&%E

TASK STOPPED &

TASK_TRACGED

TASK_DEAD

SHANDONG UNIVERSITY 17

T =X

Pid HEIEARIR AT

Uid. gid B PR BFRRTT

Euid. egid B PFRRT ., BRUERIRET

Suid. sgid #INH PR FNERART

Fsuid. fsgid XHRGEH PR XHRFEFRRR

SHANDONG UNIVERSITY

18

HIZIBIE

:L_a:EE 1—Eaé1|:| IS

13.% aX

Spinlock_t sigmask_lock (E= R B I

Long blocked S

Struct signal *sig ES IR R

Struct sem_undo *semundo AEREHMAEESE LR ERBUERIE
Struct sem_queue *semsleeping | 55 S = E{EHXHZFEIATY

SHANDONG UNIVERSITY

19

ﬁf%ﬁ?§1ﬁl JJERN

AR T RERE RCiRRE [EEA#EFE]
p_opptr Original parent #H 5

p_pptr Parent IS

p_cptr Child FiHig

p_ysptr Younger sibling BT

p_osptr Older sibling TIHFE

Pidhash_next.
Pidhash_pprev

HIFAE R A R PR E

Next_task. HIETE R EEIF R P Ry 2
prev_task
Run_list BITRAFIRYBEER

SHANDONG UNIVERSITY

20

5 B}[8] 8 <A1

ia & aX

Start_time HF2 6 12 ATE]

Per _cpu_utime HIEEEANCPUEEITHRERPESTH
ZEHYET 8]

Per_cpu_stime HIEERENCPULEBITIRERSGTS T
ZEHRT (8]

Counter HIERIKRUATE H

SHANDONG UNIVERSITY

21

5 A 22 40 H X B8R PR 13 4 2K 38

EXFR BRRE
Sruct fs_struct *fs HIE AT BT R EE R R S
Struct files_struct *files HIZFT YT

EXHK

fRFE

Struct mm_ struct *mm

mid FERE A M3k %S (6]

Struct mm_struct *active_mm SE AR S R e R oA R)

SHANDONG UNIVERSITY

22

E X fRFE
Int swappable HESHNAENHESE T
Unsigned long min_flat,maj_flt,nswap HIZBEITEIR (minor) SRTURE,

(major) RE K RZit#d . MATTEHHE

Unsigned long cmin_flat,cmaj_flt,cnswap AHIEIEBHKHIE, EFFIBEXRF

HZRZEITHR (minor) TRTUXEL,

F (major) R LR ITHE ., BMATH
g

SHANDONG UNIVERSITY 23

Active processes In Linux

struct task _struct | structtask_struct | .. | struct task_struct
process information process information | 4 o o process information

urrent

SHANDONG UNIVERSITY 24

Process Scheduling Queues

In multiprogramming or time sharing
systems, process scheduler is needed to
select a process for running

B Job queue — set of all processes in the system

B Ready queue — set of all processes residing in
main memory, ready and waiting to execute

B Device queues — set of processes waiting for an
/O device

B Processes migrate among the various gueues

SHANDONG UNIVERSITY 25

ready
queue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

erminal
unit 0

T ==

queue header PCB. PCB,
head » »>
il registers registers
il
head ——=
pe R PCB, PCB,, PCB;
- I =
head 4
PCB;
head > —
@l]

SHANDONG UNIVERSITY

Ready Queue And Various I/O Device Queues

26

Representation of Process Scheduling

[1 Once the process is allocated the CPU, one of the

following events could occur:
B |[ssue an I/O request

B Create a new subprocess

B Wait for an interrupt

g

M (=z00)7 GIIENE

I/O queue]

child
executes

interrupt

Q:curs

CPU
I/O request [
time .slice
expired
fork a
child
wait for an
interrupt

27

Schedulers

Long-term scheduler (or job scheduler) —
selects which processes should be brought into
the ready gqueue

Short-term scheduler (or CPU scheduler) —
selects which process should be executed next
and allocates CPU

SHANDONG UNIVERSITY 28

Addition of Medium Term Scheduling

Swapping

swap in

partially executed

swapped-out processes

swap out

Yy

ready queue

» N0

I/O waiting
queues

SHANDONG UNIVERSITY

29

Schedulers (Cont.)

Short-term scheduler is invoked very frequently
(milliseconds) = (must be fast)

Long-term scheduler is invoked very infrequently
(seconds, minutes) = (may be slow)

The long-term scheduler controls the degree of
multiprogramming

Processes can be described as either:

B |/O-bound process — spends more time doing I/O than
computations, many short CPU bursts

B CPU-bound process — spends more time doing
computations; few very long CPU bursts

Note: Long-term scheduler should make a careful selection
between /O bound process and CPU-bound process

SHANDONG UNIVERSITY 30

Context Switch

When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process

PCB

Context-switch time is overhead,; the system does no
useful work while switching—several milliseconds
Time dependent on hardware support

B Memory speed

B The number of registers

B The existence of special instructions

Some special CPU—Sun UltraSPARC

B Provide multiple sets of registers

SHANDONG UNIVERSITY 31

Process Creation

Parent process create children processes,

which, In turn create other processes, forming
a tree of processes

Parent process
Child process

SHANDONG UNIVERSITY

32

A tree of processes on atypical Solaris

Sched
pid=0

pageout
pid = 2

fsflush
elEl = &

telnetdaemon
pid = 7776
Csh
pid = 7778

Netscape I emacs
pid = 8105

pid = 7785

Xsession
pid = 294
sdt_shel
pid = 340
Csh

pid = 1400

l cat

. pid = 2536

SHANDONG UNIVERSITY 33

a tree of processes in UNIX

root

el
el

pagedaemoﬂ swapper

user 1 1 user 2 1 user 3 1

| I

SHANDONG UNIVERSITY 34

Process Creation (Cont.)

Resource sharing

B Parent and children share all resources

B Children share subset of parent’s resources
B Parent and child share no resources

Execution
B Parent and children execute concurrently
B Parent waits until children terminate

SHANDONG UNIVERSITY 35

Process Creation (Cont.)

Address space

B Child duplicate of parent

B Child has a program loaded into it
UNIX examples

B fork system call creates new process

B exec system call used after a fork to replace the
process’s memory space with a new program

SHANDONG UNIVERSITY

36

C Program Forking Separate Process

int main()

{
pid_t pid;
/* fork another process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
exit(-1);

}

else if (pid == 0) { /* child process */
execlp("/bin/Is", "Is", NULL);

}

else { /* parent process */
[* parent will wait for the child to complete */
wait (NULL);
printf ("Child Complete");
exit(0);

SHANDONG UNIVERSITY

37

Process Creation

parent -/;‘; ait\ resumes

exec()/ exit()

SHANDONG UNIVERSITY 38

Another example

#include <sys/types.h>
#include<stdio.h>
#include<unistd.h>
int value = 5;
int main()
{
pid_t pid;
pid = fork();
if (pid == 0)
value+=15;
else if (pid>0)
{
wait(NULL);
printf(“parent: value = %d”,value);
exit(0);
}
}

SHANDONG UNIVERSITY

39

Another example

main()

pid:
printf | sgetpid())
pid=fork() :
printf | fgetcpid())
if(pid<l)

printf |
else if (pid==l)

printf | sgetpid());
else 1if (pid>")

printf | fgetpid()):

return =

-] Ty N s L R =

-
-
i |
-
|
Ly

SHANDONG UNIVERSITY

Process creation In windows

#include <=stdio.h> »
#include =windows.h>

int main(vOoIiID)
STARTUPINFQO si;
PROCESS_INFORMATION p i;

// allocate memory
ZeroMemory (&si, sizeof (si)) ;
si.cb = sizeof (si) ;
ZeroMemory (&pi, sizeof (pi)) ;

// create child process
if (!CreateProcess (NULL, // use command line
"CEA\\WINDOWS\\system32\\mspaint.exe", // command line
NULL, // don‘t inherit process handle

NULL, // don’'t inherit thread handle

FALSE, // disable handle inheritance

0, // no creation flags

NULL, // use parent’'s environment block
NULL, // use parent'’'s existing directory
&si,

&pi))

fprintf (stderr, "Create Process Failed") ;
return -1;
}
// parent will wait for the child to complete
WaitForSingleObject (pi.hProcess, INFINITE) ;
printf ("Child Complete") ;

// close handles
CloseHandle (pi . hProcess) ;
CloseHandle (pi . hThread) ;

41

Figure 3.12 Creating a separate process using the Win32 API.

#include "stdio.h"
#include "unistd.h"
#include "sys/ types.h"

main()

S
Int pid;
int I;
char *flag[]={"child", "parent"};
pid=fork();
If(pid==0)
1=0;
else i=1;

\ printf("%s:i=%d,&i=%d\n" flag[i],i,&i);

BITERWT
child:i=0,&i=-1073751104
parent:i=1,&I=-1073751104

SHANDONG UNIVERSITY

42

SR FHFFERfork O BIETFiHIEC/, T
LT ErETFHEEPENZE, Xi#FEEELSHE
N HAE B s ?

AERTE

B. BERET =

=% s =
C. 3F5TT=E

D. X HH4E%T

SHANDONG UNIVERSITY 43

Process Termination

Process executes last statement and asks the
operating system to delete it (exit)

B Output data from child to parent (via wait)

B Process’ resources are deallocated by operating system

Parent may terminate execution of children processes
(abort)

B Child has exceeded allocated resources

B Task assigned to child is no longer required

B |[f parent is exiting

[0 Some operating system do not allow child to continue if its
parent terminates
B All children terminated - cascading termination

SHANDONG UNIVERSITY 44

Cooperating Processes

Independent process cannot affect or be
affected by the execution of another process

Cooperating process can affect or be affected
by the execution of another process

Advantages of process cooperation
B Information sharing

B Computation speed-up

B Modularity

B Convenience

SHANDONG UNIVERSITY 45

Communications Models

process A M process A
Pk
shared o
2
process B M process B Tt

kernel M kernel

(@) (b)

SHANDONG UNIVERSITY 46

Producer-Consumer Problem

Paradigm for cooperating processes, producer
orocess produces information that is consumed
0y a consumer process

B unbounded-buffer places no practical limit on the
size of the buffer

B bounded-buffer assumes that there is a fixed buffer
size

SHANDONG UNIVERSITY 47

Producer-Consumer Problem

@ @

EreE a1, BAEk HHE
B:Array[0..k-1]Of item

SHANDONG UNIVERSITY 48

Bounded-Buffer — Shared-Memory Solution

Shared data
#define BUFFER _SIZE 10
typedef struct {

ZRX =M=

OO item buffer[BUFFER_SIZE];
ZMX BT

int in = 0O:
iNntout=0:- ©

SHANDONG UNIVERSITY 49

Bounded-Buffer — Insert() Method

while (true) {
[* Produce an item */

while (((in + 1) % BUFFER SIZE) == out)
. [* do nothing -- no free buffers */
buffer[in] = item;
in=(in + 1) % BUFFER SIZE;
}

SHANDONG UNIVERSITY 50

Bounded Buffer — Remove() Method

while (true) {
while (in == out)
, /I do nothing -- nothing to consume

/l remove an item from the buffer
item = buffer[out];

out = (out + 1) % BUFFER SIZE;
return item;

}

*Solution Is correct, but can only use
BUFFER_ SIZE-1 elements

SHANDONG UNIVERSITY

51

Message-passing systems

It provides a mechanism to allow processes to
communicate and to synchronize their actions
without sharing the same address space

It Is particularly useful in a distributed system.
Such as the chat program

SHANDONG UNIVERSITY 52

Interprocess Communication (IPC)

Mechanism for processes to communicate and to
synchronize their actions

Message system — processes communicate with each
other without resorting to shared variables

IPC facility provides two operations:

B send(message) — message size fixed or variable

B receive(message)

If P and Q wish to communicate, they need to:

B establish a communication link between them

B exchange messages via send/receive
Implementation of communication link

B physical (e.g., shared memory, hardware bus, network)
B |ogical (e.g., logical properties)

SHANDONG UNIVERSITY 53

Classification of Message System

Direct or indirect communication
Synchronous or asynchronous communication
Automatic or explicit buffering

SHANDONG UNIVERSITY 54

Implementation Questions

How are links established?

Can a link be associated with more than two
orocesses?

How many links can there be between every
pair of communicating processes?

What is the capacity of a link?

Is the size of a message that the link can
accommodate fixed or variable?

Is a link unidirectional or bi-directional?

SHANDONG UNIVERSITY S

Direct Communication

Processes must name each other explicitly:

B send (P, message) — send a message to process
P

B receive(Q, message) — receive a message from
process Q

Properties of communication link
B Links are established automatically

B A link is associated with exactly one pair of
communicating processes

B Between each pair there exists exactly one link

B The link may be unidirectional, but is usually bi-
directional

SHANDONG UNIVERSITY 56

Direct Communication

Symmetry addressing

Asymmetry addressing
B Send(p, message)
B Receive(id, message)

SHANDONG UNIVERSITY

57

Indirect Communication

Messages are directed and received from
mailboxes (also referred to as ports)

B Each mailbox has a unique id

B Processes can communicate only if they share a
mailbox

Properties of communication link

B Link established only If processes share a common
mailbox

B A link may be associated with many processes

B Each pair of processes may share several
communication links

B Link may be unidirectional or bi-directional

SHANDONG UNIVERSITY 58

Indirect Communication

Operations

B create a nhew mailbox

B send and receive messages through mailbox
B destroy a mailbox

Primitives are defined as:

send(A, message) — send a message to
mailbox A

receive(A, message) — receive a message
from mailbox A

SHANDONG UNIVERSITY 59

Indirect Communication

Mailbox sharing

P,, P,, and P, share mailbox A
P,, sends; P, and P, receive
Who gets the message?

Solutions

Allow a link to be associated with at most two
processes

Allow only one process at a time to execute a
receive operation

Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

SHANDONG UNIVERSITY 60

Synchronization

Message passing may be either blocking or
non-blocking

Blocking Is considered synchronous

B Blocking send makes the sender blocked until the
message Is received

B Blocking receive makes the receiver blocked until
a message Is available
Non-blocking Is considered asynchronous

B Non-blocking send makes the sender to send the
message and to continue

B Non-blocking receive makes the receiver receive
a valid message or null

SHANDONG UNIVERSITY 61

Buffering

Queue of messages attached to the link;
Implemented in one of three ways

1. Zero capacity — O messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must walit If link full

3. Unbounded capacity — infinite length
Sender never waits

SHANDONG UNIVERSITY

62

Examples of IPC systems

[1 POSIX API

First to create a shared memory segment
O Segment id = shmget(IPC_PRIVATE, size, S IRUSRI|S IWUSR)

O The first parameter tells the system to create a new shared memory
segment,

[0 The second one tells the system the size of the segment to be created.
0 The third one tells the system the rights that users can operate it.
Attach the shared memory to process’s address space

O Shared memory = (char *) shmat(id, NULL, O)

[0 The first parameter is the integer identifier of shared memory segment

[0 The second is a pointer location in memory indicating where the
shared memory will be attached.

0 The third one defines the mode that the process can access

It is removed from the system
O Shmectl()

P.104

SHANDONG UNIVERSITY 63

Examples of IPC systems

Mach

B In Mach, messages are sent to and received from mailboxes,
called ports in Mach

Port_allocate() is used to create a mailbox.

For a single user, messages are queued in FIFO order.
Msg_ send()

Msg receive()

B Port status()

If the mailbox is full, the sending thread has four
options:

B Wait indefinitely until there is room in the mailbox

B \Wait at most n milliseconds

B Do not wait at all rather return immediately

B Temporarily cache a message.

SHANDONG UNIVERSITY 64

Examples of IPC systems

Windows XP

B The message-passing facility in XP is called the local
procedure-call (LPC)

B XP uses a port object to establish and maintain a connection
between two processes

The communication works as follows:

B The client opens a handle to the subsystem’s connection
port object

B The client sends a connection request
The server creates ports, and returns the handle to the client

B The client and server use the corresponding port handle to
send messages or callbacks and to listen for replies.

SHANDONG UNIVERSITY 65

Client

Connection

Handle

Server

request _‘ Connecti-o'h -
"} Port -
Handle Client

Communication Port

»

v

Servef
Communication Port

Handle

Shared

-t » Section Object |«
(= = 256 bytes)

Figure 3.17 Local procedure calls in Windows XP.

SHANDONG UNIVERSITY

Y

66

Client-Server Communication

Sockets
Remote Procedure Calls
Remote Method Invocation (Java)

SHANDONG UNIVERSITY 67

Data format on the Internet

Frame Packet TPDU
header header header
/ / P
7 5 e

TPDU payload

A

Packet payload >

A

Y

Frame payload

SHANDONG UNIVERSITY 68

IP Header

- 32 Bits -
T T T T T T T T T T T N T A ST ST T T YT T Y N N A
Version IHL Type of service Total length
Identification I|Z:) hlf Fragment offset
Time to live Protocol Header checksum

Source address

Destination address

((
)
((
)

Options (0 or more words)

SHANDONG UNIVERSITY 69

EE4F O 4 8 16 19 24 31
EEISANE 3
Rl FRas FE k& %
& 75 B (8] o B W I A0
R R
H) # it
lE (K B 7 &)

el v m | W B B %
T P H4E4R
% RIERT

SHANDONG UNIVERSITY 70

TCP Header

((
J)

{{
))

A

32 Bits

Y

Source port

Destination port

Sequence number

Acknowledgement number

TCP
header
length

U/lA[P|R|SI|F
RIC|S|[S|Y]|I Window size
G|K|{H|T|N|N

Checksum

Urgent pointer

Options (0 or more 32-bit words)

((
J)

Data (optional)

{{
))

SHANDONG UNIVERSITY

71

UDP Header

32 Bits

B iE
TUDP=L K %4 | ‘ \@

e .) =
- source po ﬁﬁﬁﬁﬁ\ destination port

UDPEEIR UDP length “MUDP checksum
HFHKE

SHANDONG UNIVERSITY 72

A socket Is defined as an endpoint for
communication

Concatenation of IP address and port

The socket 161.25.19.8:1625 refers to port
1625 on host 161.25.19.8

Communication consists between a pair of
sockets

SHANDONG UNIVERSITY 73

Socket Communication

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
A 2s 1888,

P.109&110

SHANDONG UNIVERSITY 74

Remote Procedure Calls

Remote procedure call (RPC) abstracts
procedure calls between processes on
networked systems.

Stubs — client-side proxy for the actual
procedure on the server.

The client-side stub locates the server and
marshalls the parameters.

The server-side stub receives this message,
unpacks the marshalled parameters, and
performs the procedure on the server.

SHANDONG UNIVERSITY 75

Remote Procedure Call

Client CPU Server CPU
1/_.\ Client Server,
. stub stub 7
Client 7 A @
— |2 4
Operating system \ A Operating system
_ 3 y
Network

SHANDONG UNIVERSITY 76

Execution of RPC

client

user calls kernel
to send RPC
message to
procedure X

kernel sends
message to
matchmaker to
find port number

kernel places
port Pin user
RPC message

kernel sends
RPC

kernel receives
reply, passes
it to user

messages

From: client
To: server
Port: matchmaker
Re: address
for RPC X

From: server
To: client
Part: kernel
Re: RPC X
e inis 1

From: client
To: server
Port: port P
<contents=

From: RPC
B
To: client
Part: kernel
<output=

server

matchmaker
receives
message, looks
up answer

L 4

matchmaker
replies to client
with port P

daemon
listening to
port P receives
message

¥

dasmon
processes
request and
processes send
output

SHANDONG UNIVERSITY

[&s

Remote Method Invocation

Remote Method Invocation (RMI) is a Java
mechanism similar to RPCs.

RMI allows a Java program on one machine to
Invoke a method on a remote object.

JVM

JVM

Java @-
program

® remote
object

P

SHANDONG UNIVERSITY /8

Marshalling Parameters

client remote object

val = server.someMethod(A,B) boolean someMethod (Object x, Object y)

{

implementation of someMethod

P

stub skeleton
 § §

}

A, B, someMethod

boolean return value

SHANDONG UNIVERSITY 79

3.2, 3.4,

SHANDONG UNIVERSITY 80

End of Chapter 3

Any Question?

	Chapter 3
	Contents
	Objectives
	Process Concept
	Process in Memory
	Process State
	Diagram of Process State
	Diagram of Process State
	Process Control Block (PCB)
	Process Control Block (PCB)
	CPU Switch From Process to Process
	PCB of Linux
	PCB of Linux
	PCB of Linux
	PCB of Linux
	PCB of Linux
	Linux进程的状态
	标识符
	进程通信
	进程链接信息
	与时间有关的域
	与文件系统相关的域和内存相关域
	页面管理信息
	Active processes in Linux
	Process Scheduling Queues
	Ready Queue And Various I/O Device Queues
	Representation of Process Scheduling
	Schedulers
	Addition of Medium Term Scheduling
	Schedulers (Cont.)
	Context Switch
	Process Creation
	A tree of processes on a typical Solaris
	a tree of processes in UNIX
	Process Creation (Cont.)
	Process Creation (Cont.)
	C Program Forking Separate Process
	Process Creation
	Another example
	Another example
	Process creation in windows
	Assignment
	幻灯片编号 43
	Process Termination
	Cooperating Processes
	Communications Models
	Producer-Consumer Problem
	Producer-Consumer Problem
	Bounded-Buffer – Shared-Memory Solution
	Bounded-Buffer – Insert() Method
	Bounded Buffer – Remove() Method
	Message-passing systems
	Interprocess Communication (IPC)
	Classification of Message System
	Implementation Questions
	Direct Communication
	Direct Communication
	Indirect Communication
	Indirect Communication
	Indirect Communication
	Synchronization
	Buffering
	Examples of IPC systems
	Examples of IPC systems
	Examples of IPC systems
	幻灯片编号 66
	Client-Server Communication
	Data format on the Internet
	IP Header
	幻灯片编号 70
	TCP Header
	UDP Header
	Sockets
	Socket Communication
	Remote Procedure Calls
	Remote Procedure Call
	Execution of RPC
	Remote Method Invocation
	Marshalling Parameters
	Assignment
	End of Chapter 3

