
Chapter 3

Processes

SHANDONG UNIVERSITY 2

Contents
 Process Concept
 Process Scheduling
 Operations on Processes
 Interprocesses Communication
 Examples of IPC Systems
 Communication in Client-Server Systems

SHANDONG UNIVERSITY 3

Objectives
 To introduce the notion of a process---a

program in execution, which forms the basis of
all computation

 To describe the various features of processes,
including scheduling, creation and termination,
and communication.

 To describe communications in client-server
systems

SHANDONG UNIVERSITY 4

Process Concept
 An operating system executes a variety of programs:
 Batch system – jobs
 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost
interchangeably

 Process – a program in execution; process execution
must progress in sequential fashion

 A process includes:
 Text section
 program counter
 stack
 data section

SHANDONG UNIVERSITY 5

Process in Memory

SHANDONG UNIVERSITY 6

Process State
 As a process executes, it changes state
 new: The process is being created
 running: Instructions are being executed
 waiting: The process is waiting for some event to

occur
 ready: The process is waiting to be assigned to a

processor
 terminated: The process has finished execution

SHANDONG UNIVERSITY 7

Diagram of Process State

SHANDONG UNIVERSITY 8

Diagram of Process State

活动

挂起

事件
发生

事件
发生 等待

事件

挂起

调度

超时

释放

活动

挂起

SHANDONG UNIVERSITY 9

Process Control Block (PCB)
In order to manage processes, OS defines a data
structure for each process to record the process’s
characteristics, and describe the change.

Information associated with each process
 Process state
 Process number
 Program counter
 CPU registers
 CPU scheduling information
 Memory-management information
 Accounting information
 I/O status information

SHANDONG UNIVERSITY 10

Process Control Block (PCB)

SHANDONG UNIVERSITY 11

CPU Switch From Process to Process

SHANDONG UNIVERSITY 12

PCB of Linux
The PCB in Linux is represented by the C structure task_struct.
This structure contains information for representing a process, including

the state of the process, scheduling, and memory management
information, list of open files, and pointers to the process’s parent
and any of its children.

Struct task_struct{
 /* task state */
 Volatile long state; //定义 task 运行的状态, 以及信号

 struct linux_binfmt *binfmt;
 int exit_code, exit_signal;
 int pdeath_signal; /* The signal sent when the parent dies */
 /* 定义进程的用户号,用户组以及进程组*/
 unsigned long personality;
 int dumpable:1;
 int did_exec:1;
 pid_t pid; //process identifier
 Long state; //state of the process
 pid_t pgrp;
 pid_t tty_old_pgrp;
 pid_t session;

SHANDONG UNIVERSITY 13

PCB of Linux
 /* boolean value for session group leader */
 是否为进程组的头
 int leader;
 /*
 * pointers to (original) parent process, youngest child, younger sibling,
 * older sibling, respectively. (p->father can be replaced with
 * p->p_pptr->pid)
 */
 父子进程的一些指针
 struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;

 /* PID hash table linkage. */
 在调度中用的一些hash 表
 struct task_struct *pidhash_next;
 struct task_struct **pidhash_pprev;

SHANDONG UNIVERSITY 14

PCB of Linux
 /* Pointer to task[] array linkage. */
 struct task_struct **tarray_ptr;
 struct wait_queue *wait_chldexit; /* for wait4() 等待队列 */
 struct semaphore *vfork_sem; /* for vfork() */
 unsigned long policy, rt_priority;
 unsigned long it_real_value, it_prof_value, it_virt_value;
 进程的性质因为实时进程与普通进程的调度算法不一样所以应有变量区分
 下面是进程的一些时间信息
 unsigned long it_real_incr, it_prof_incr, it_virt_incr;
 struct timer_list real_timer;
 struct tms times;
 unsigned long start_time;
 long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS];//定义了时间片的大小
 /* mm fault and swap info: this can arguably be seen as either mm-specific or

thread-specific */
 内存信息
 unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
 int swappable:1;

SHANDONG UNIVERSITY 15

PCB of Linux
 /* process credentials */
 uid_t uid,euid,suid,fsuid;
 gid_t gid,egid,sgid,fsgid;
 int ngroups;
 gid_t groups[NGROUPS];
 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
 struct user_struct *user;
 /* limits */
 struct rlimit rlim[RLIM_NLIMITS];
 unsigned short used_math;
 char comm[16];
 /* file system info */
 int link_count;
 struct tty_struct *tty; /* NULL if no tty */
 /* ipc stuff */

SHANDONG UNIVERSITY 16

PCB of Linux
 struct sem_undo *semundo;
 struct sem_queue *semsleeping;
 /* tss for this task */
 struct thread_struct tss;
 /* filesystem information */
 struct fs_struct *fs;
 /* open file information */
 struct files_struct *files; //list of open files
 /* memory management info */
 struct mm_struct *mm; //address space of this process

 /* signal handlers */
 spinlock_t sigmask_lock; /* Protects signal and blocked */
 struct signal_struct *sig;
 sigset_t signal, blocked;
 struct signal_queue *sigqueue, **sigqueue_tail;
 unsigned long sas_ss_sp;
 size_t sas_ss_size;
 };

SHANDONG UNIVERSITY 17

Linux进程的状态

 TASK_RUNNING 可运行

 TASK_INTERRUPTIBLE 可中断的等待状态

 TASK_UNINTERRUPTIBLE 不可中断的等待状态

 TASK_ZOMBIE 僵死

 TASK_STOPPED 暂停

 TASK_TRACED

 TASK_DEAD

SHANDONG UNIVERSITY 18

标识符

域名 含义

Pid 进程标识符

Uid、gid 用户标识符、组标识符

Euid、egid 有效用户标识符、有效组标识符

Suid、sgid 备份用户标识符、备份组标识符

Fsuid、fsgid 文件系统用户标识符、文件系统组标识符

SHANDONG UNIVERSITY 19

进程通信

 进程通信有关信息

域名 含义

Spinlock_t sigmask_lock 信号掩码的自旋锁

Long blocked 信号掩码

Struct signal *sig 信号处理函数

Struct sem_undo *semundo 为避免死锁而在信号量上设置的取消操作

Struct sem_queue *semsleeping 与信号量操作相关的等待队列

SHANDONG UNIVERSITY 20

进程链接信息

名称 英文解释 中文解释 [指向哪个进程]

p_opptr Original parent 祖先

p_pptr Parent 父进程

p_cptr Child 子进程

p_ysptr Younger sibling 弟进程

p_osptr Older sibling 兄进程

Pidhash_next、
Pidhash_pprev

进程在哈希表中的链接

Next_task、
prev_task

进程在双向循环链表中的链接

Run_list 运行队列的链表

SHANDONG UNIVERSITY 21

与时间有关的域

域名 含义

Start_time 进程创建时间

Per_cpu_utime 进程在某个CPU上运行时在用户态下耗
费的时间

Per_cpu_stime 进程在某个CPU上运行时在系统态下耗
费的时间

Counter 进程剩余的时间片

SHANDONG UNIVERSITY 22

与文件系统相关的域和内存相关域

定义形式 解释

Sruct fs_struct *fs 进程的可执行映象所在的文件系统

Struct files_struct *files 进程打开的文件

定义形式 解释

Struct mm_struct *mm 描述进程的地址空间

Struct mm_struct *active_mm 内核线程所借用的地址空间

SHANDONG UNIVERSITY 23

页面管理信息

定义形式 解释

Int swappable 进程占用的内存页面是否可换出

Unsigned long min_flat,maj_flt,nswap 进程累计的次（minor）缺页次数、主
(major)次数及累计换出、换入页面数

Unsigned long cmin_flat,cmaj_flt,cnswap 本进程作为祖先进程，其所有层次子
进程的累计的次（minor）缺页次数、
主(major)次数及累计换出、换入页面
数

SHANDONG UNIVERSITY 24

Active processes in Linux

SHANDONG UNIVERSITY 25

Process Scheduling Queues
In multiprogramming or time sharing
systems, process scheduler is needed to
select a process for running
 Job queue – set of all processes in the system
 Ready queue – set of all processes residing in

main memory, ready and waiting to execute
 Device queues – set of processes waiting for an

I/O device
 Processes migrate among the various queues

SHANDONG UNIVERSITY 26

Ready Queue And Various I/O Device Queues

SHANDONG UNIVERSITY 27

Representation of Process Scheduling
 Once the process is allocated the CPU, one of the

following events could occur:
 Issue an I/O request
 Create a new subprocess
 Wait for an interrupt

SHANDONG UNIVERSITY 28

Schedulers
 Long-term scheduler (or job scheduler) –

selects which processes should be brought into
the ready queue

 Short-term scheduler (or CPU scheduler) –
selects which process should be executed next
and allocates CPU

SHANDONG UNIVERSITY 29

Addition of Medium Term Scheduling
 Swapping

SHANDONG UNIVERSITY 30

Schedulers (Cont.)
 Short-term scheduler is invoked very frequently

(milliseconds) ⇒ (must be fast)
 Long-term scheduler is invoked very infrequently

(seconds, minutes) ⇒ (may be slow)
 The long-term scheduler controls the degree of

multiprogramming
 Processes can be described as either:
 I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts
 CPU-bound process – spends more time doing

computations; few very long CPU bursts
Note: Long-term scheduler should make a careful selection

between I/O bound process and CPU-bound process

SHANDONG UNIVERSITY 31

Context Switch
 When CPU switches to another process, the system

must save the state of the old process and load the
saved state for the new process

 PCB
 Context-switch time is overhead; the system does no

useful work while switching—several milliseconds
 Time dependent on hardware support
 Memory speed
 The number of registers
 The existence of special instructions

 Some special CPU—Sun UltraSPARC
 Provide multiple sets of registers

SHANDONG UNIVERSITY 32

Process Creation
 Parent process create children processes,

which, in turn create other processes, forming
a tree of processes

 Parent process
 Child process

SHANDONG UNIVERSITY 33

A tree of processes on a typical Solaris

SHANDONG UNIVERSITY 34

a tree of processes in UNIX

SHANDONG UNIVERSITY 35

Process Creation (Cont.)
 Resource sharing
 Parent and children share all resources
 Children share subset of parent’s resources
 Parent and child share no resources

 Execution
 Parent and children execute concurrently
 Parent waits until children terminate

SHANDONG UNIVERSITY 36

Process Creation (Cont.)
 Address space
 Child duplicate of parent
 Child has a program loaded into it

 UNIX examples
 fork system call creates new process
 exec system call used after a fork to replace the

process’s memory space with a new program

SHANDONG UNIVERSITY 37

C Program Forking Separate Process
int main()
{

pid_t pid;
/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
exit(-1);

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child to complete */
wait (NULL);
printf ("Child Complete");
exit(0);

}
}

SHANDONG UNIVERSITY 38

Process Creation

SHANDONG UNIVERSITY 39

Another example
#include <sys/types.h>
#include<stdio.h>
#include<unistd.h>
int value = 5;
int main()
{

pid_t pid;
pid = fork();
if (pid == 0)

value+=15;
else if (pid>0)
{

wait(NULL);
printf(“parent: value = %d”,value);
exit(0);

}
}

Another example

SHANDONG UNIVERSITY 40

SHANDONG UNIVERSITY 41

Process creation in windows

SHANDONG UNIVERSITY 42

Assignment
#include "stdio.h"
#include "unistd.h"
#include "sys/ types.h"

main()
{

int pid;
int i;
char *flag[]={"child", "parent"};

pid=fork();
if(pid==0)

i=0;
else i=1;

printf("%s:i=%d,&i=%d\n",flag[i],i,&i);
}

运行结果如下：
child:i=0,&i=-1073751104
parent:i=1,&i=-1073751104

 当父进程调用fork()创建子进程之后，下列哪
些变量在子进程中修改之后，父进程里也会相
应地作出改动？
A.全局变量
B.局部变量
C.静态变量
D.文件指针

SHANDONG UNIVERSITY 43

SHANDONG UNIVERSITY 44

Process Termination
 Process executes last statement and asks the

operating system to delete it (exit)
 Output data from child to parent (via wait)
 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes
(abort)
 Child has exceeded allocated resources
 Task assigned to child is no longer required
 If parent is exiting
 Some operating system do not allow child to continue if its

parent terminates
 All children terminated - cascading termination

SHANDONG UNIVERSITY 45

Cooperating Processes
 Independent process cannot affect or be

affected by the execution of another process
 Cooperating process can affect or be affected

by the execution of another process
 Advantages of process cooperation
 Information sharing
 Computation speed-up
 Modularity
 Convenience

SHANDONG UNIVERSITY 46

Communications Models

SHANDONG UNIVERSITY 47

Producer-Consumer Problem
 Paradigm for cooperating processes, producer

process produces information that is consumed
by a consumer process
 unbounded-buffer places no practical limit on the

size of the buffer
 bounded-buffer assumes that there is a fixed buffer

size

SHANDONG UNIVERSITY 48

Producer-Consumer Problem

0 1 …… k-1

箱子，容量k

B:Array[0..k-1]Of item

生产者 消费者

生产物品
放入B中

B中取物品
消费之

SHANDONG UNIVERSITY 49

Bounded-Buffer – Shared-Memory Solution
 Shared data

#define BUFFER_SIZE 10
typedef struct {
. . .
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

缓冲区下一个空位

缓冲区第一个非空位

SHANDONG UNIVERSITY 50

Bounded-Buffer – Insert() Method
while (true) {

/* Produce an item */
while (((in + 1) % BUFFER SIZE) == out)
; /* do nothing -- no free buffers */
buffer[in] = item;
in = (in + 1) % BUFFER SIZE;

}

SHANDONG UNIVERSITY 51

Bounded Buffer – Remove() Method
while (true) {

while (in == out)
; // do nothing -- nothing to consume

// remove an item from the buffer
item = buffer[out];
out = (out + 1) % BUFFER SIZE;
return item;

}
*Solution is correct, but can only use
BUFFER_SIZE-1 elements

SHANDONG UNIVERSITY 52

Message-passing systems
 It provides a mechanism to allow processes to

communicate and to synchronize their actions
without sharing the same address space

 It is particularly useful in a distributed system.
 Such as the chat program

SHANDONG UNIVERSITY 53

Interprocess Communication (IPC)
 Mechanism for processes to communicate and to

synchronize their actions
 Message system – processes communicate with each

other without resorting to shared variables
 IPC facility provides two operations:
 send(message) – message size fixed or variable
 receive(message)

 If P and Q wish to communicate, they need to:
 establish a communication link between them
 exchange messages via send/receive

 Implementation of communication link
 physical (e.g., shared memory, hardware bus, network)
 logical (e.g., logical properties)

SHANDONG UNIVERSITY 54

Classification of Message System
 Direct or indirect communication
 Synchronous or asynchronous communication
 Automatic or explicit buffering

SHANDONG UNIVERSITY 55

Implementation Questions
 How are links established?
 Can a link be associated with more than two

processes?
 How many links can there be between every

pair of communicating processes?
 What is the capacity of a link?
 Is the size of a message that the link can

accommodate fixed or variable?
 Is a link unidirectional or bi-directional?

SHANDONG UNIVERSITY 56

Direct Communication
 Processes must name each other explicitly:
 send (P, message) – send a message to process

P
 receive(Q, message) – receive a message from

process Q
 Properties of communication link
 Links are established automatically
 A link is associated with exactly one pair of

communicating processes
 Between each pair there exists exactly one link
 The link may be unidirectional, but is usually bi-

directional

SHANDONG UNIVERSITY 57

Direct Communication
 Symmetry addressing
 Asymmetry addressing
 Send(p, message)
 Receive(id, message)

SHANDONG UNIVERSITY 58

Indirect Communication
 Messages are directed and received from

mailboxes (also referred to as ports)
 Each mailbox has a unique id
 Processes can communicate only if they share a

mailbox
 Properties of communication link
 Link established only if processes share a common

mailbox
 A link may be associated with many processes
 Each pair of processes may share several

communication links
 Link may be unidirectional or bi-directional

SHANDONG UNIVERSITY 59

Indirect Communication
 Operations
 create a new mailbox
 send and receive messages through mailbox
 destroy a mailbox

 Primitives are defined as:
send(A, message) – send a message to
mailbox A
receive(A, message) – receive a message
from mailbox A

SHANDONG UNIVERSITY 60

Indirect Communication
 Mailbox sharing
 P1, P2, and P3 share mailbox A
 P1, sends; P2 and P3 receive
 Who gets the message?

 Solutions
 Allow a link to be associated with at most two

processes
 Allow only one process at a time to execute a

receive operation
 Allow the system to select arbitrarily the receiver.

Sender is notified who the receiver was.

SHANDONG UNIVERSITY 61

Synchronization
 Message passing may be either blocking or

non-blocking
 Blocking is considered synchronous
 Blocking send makes the sender blocked until the

message is received
 Blocking receive makes the receiver blocked until

a message is available
 Non-blocking is considered asynchronous
 Non-blocking send makes the sender to send the

message and to continue
 Non-blocking receive makes the receiver receive

a valid message or null

SHANDONG UNIVERSITY 62

Buffering
 Queue of messages attached to the link;

implemented in one of three ways
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)
2. Bounded capacity – finite length of n messages

Sender must wait if link full
3. Unbounded capacity – infinite length

Sender never waits

SHANDONG UNIVERSITY 63

Examples of IPC systems
 POSIX API

 First to create a shared memory segment
 Segment_id = shmget(IPC_PRIVATE, size, S_IRUSR|S_IWUSR)
 The first parameter tells the system to create a new shared memory

segment.
 The second one tells the system the size of the segment to be created.
 The third one tells the system the rights that users can operate it.

 Attach the shared memory to process’s address space
 Shared_memory = (char *) shmat(id, NULL, 0)
 The first parameter is the integer identifier of shared memory segment
 The second is a pointer location in memory indicating where the

shared memory will be attached.
 The third one defines the mode that the process can access

 It is removed from the system
 Shmctl()

P. 104

SHANDONG UNIVERSITY 64

Examples of IPC systems
 Mach
 In Mach, messages are sent to and received from mailboxes,

called ports in Mach
 Port_allocate() is used to create a mailbox.
 For a single user, messages are queued in FIFO order.
 Msg_send()
 Msg_receive()
 Port_status()

 If the mailbox is full, the sending thread has four
options:
 Wait indefinitely until there is room in the mailbox
 Wait at most n milliseconds
 Do not wait at all rather return immediately
 Temporarily cache a message.

SHANDONG UNIVERSITY 65

Examples of IPC systems
 Windows XP
 The message-passing facility in XP is called the local

procedure-call (LPC)
 XP uses a port object to establish and maintain a connection

between two processes

 The communication works as follows:
 The client opens a handle to the subsystem’s connection

port object
 The client sends a connection request
 The server creates ports, and returns the handle to the client
 The client and server use the corresponding port handle to

send messages or callbacks and to listen for replies.

SHANDONG UNIVERSITY 66

SHANDONG UNIVERSITY 67

Client-Server Communication
 Sockets
 Remote Procedure Calls
 Remote Method Invocation (Java)

SHANDONG UNIVERSITY 68

Data format on the Internet

SHANDONG UNIVERSITY 69

IP Header

SHANDONG UNIVERSITY 70

固
定
部
分

可变
部分

0 4 8 16 19 24 31
版 本

标志

生 存 时 间 协 议

标 识

服 务 类 型 总 长 度

片 偏 移

填 充

首 部 检 验 和

源 地 址

目 的 地 址

可 选 字 段 （长 度 可 变）

比特

首部长度

0 1 2 3 4 5 6 7
D T R C 未用优 先 级

数 据 部 分

比特

数 据 部 分首 部传送

IP 数据报

首
部

发送在前

SHANDONG UNIVERSITY 71

TCP Header

SHANDONG UNIVERSITY 72

UDP Header

SHANDONG UNIVERSITY 73

Sockets
 A socket is defined as an endpoint for

communication
 Concatenation of IP address and port
 The socket 161.25.19.8:1625 refers to port

1625 on host 161.25.19.8
 Communication consists between a pair of

sockets

SHANDONG UNIVERSITY 74

Socket Communication

 P.109&110

SHANDONG UNIVERSITY 75

Remote Procedure Calls
 Remote procedure call (RPC) abstracts

procedure calls between processes on
networked systems.

 Stubs – client-side proxy for the actual
procedure on the server.

 The client-side stub locates the server and
marshalls the parameters.

 The server-side stub receives this message,
unpacks the marshalled parameters, and
performs the procedure on the server.

SHANDONG UNIVERSITY 76

Remote Procedure Call

SHANDONG UNIVERSITY 77

Execution of RPC

SHANDONG UNIVERSITY 78

Remote Method Invocation
 Remote Method Invocation (RMI) is a Java

mechanism similar to RPCs.
 RMI allows a Java program on one machine to

invoke a method on a remote object.

SHANDONG UNIVERSITY 79

Marshalling Parameters

SHANDONG UNIVERSITY 80

Assignment
 3.2, 3.4,

End of Chapter 3

Any Question?

	Chapter 3
	Contents
	Objectives
	Process Concept
	Process in Memory
	Process State
	Diagram of Process State
	Diagram of Process State
	Process Control Block (PCB)
	Process Control Block (PCB)
	CPU Switch From Process to Process
	PCB of Linux
	PCB of Linux
	PCB of Linux
	PCB of Linux
	PCB of Linux
	Linux进程的状态
	标识符
	进程通信
	进程链接信息
	与时间有关的域
	与文件系统相关的域和内存相关域
	页面管理信息
	Active processes in Linux
	Process Scheduling Queues
	Ready Queue And Various I/O Device Queues
	Representation of Process Scheduling
	Schedulers
	Addition of Medium Term Scheduling
	Schedulers (Cont.)
	Context Switch
	Process Creation
	A tree of processes on a typical Solaris
	a tree of processes in UNIX
	Process Creation (Cont.)
	Process Creation (Cont.)
	C Program Forking Separate Process
	Process Creation
	Another example
	Another example
	Process creation in windows
	Assignment
	幻灯片编号 43
	Process Termination
	Cooperating Processes
	Communications Models
	Producer-Consumer Problem
	Producer-Consumer Problem
	Bounded-Buffer – Shared-Memory Solution
	Bounded-Buffer – Insert() Method
	Bounded Buffer – Remove() Method
	Message-passing systems
	Interprocess Communication (IPC)
	Classification of Message System
	Implementation Questions
	Direct Communication
	Direct Communication
	Indirect Communication
	Indirect Communication
	Indirect Communication
	Synchronization
	Buffering
	Examples of IPC systems
	Examples of IPC systems
	Examples of IPC systems
	幻灯片编号 66
	Client-Server Communication
	Data format on the Internet
	IP Header
	幻灯片编号 70
	TCP Header
	UDP Header
	Sockets
	Socket Communication
	Remote Procedure Calls
	Remote Procedure Call
	Execution of RPC
	Remote Method Invocation
	Marshalling Parameters
	Assignment
	End of Chapter 3

