
Chapter 4

Threads

SHANDONG UNIVERSITY 2

Contents
 Overview
 Multithreading Models
 Threading Issues
 Pthreads
 Windows XP Threads
 Linux Threads
 Java Threads

SHANDONG UNIVERSITY 3

Objectives
 To introduce the notion of a thread---a

fundamental unit of CPU utilization that forms
the basis of multithread computer system.

 To discuss the APIs for Pthreads, Win32, and
Java thread libraries.

SHANDONG UNIVERSITY 4

Thread
 A thread
 A running entity of a process, and a unit that can

be scheduled independently.
 A basic unit of CPU utilization

SHANDONG UNIVERSITY 5

Motivation
 When increase the concurrence of system, the

time spent on process creation, process
cancellation, process exchange will increase
greatly

 In addition, the communication between
processes is also limited.

SHANDONG UNIVERSITY 6

Motivation --- example
 Suppose there is a web server
 What is the result if there is only one thread?
 The time to create
 The time to exchange
 The space for each user

 A program will accept input from user, list the
menu, execute the command
 What is the result if there is only one thread?

SHANDONG UNIVERSITY 7

Single and Multithreaded Processes

SHANDONG UNIVERSITY 8

Benefits
 Responsiveness

 Resource Sharing

 Economy

 Utilization of MP Architectures

SHANDONG UNIVERSITY 9

Thread
 A thread
 A running entity of a process, and a unit that can

be scheduled independently.
 A basic unit of CPU utilization

 Resources still belong to process
 Code section
 Data section
 Open files
 Signals

SHANDONG UNIVERSITY 10

Thread & Process
 Process is the owner of resources
 Code section
 Data section
 Open files
 Signals

 Thread is a running unit (smallest unit)
 Thread has few resources (counter, register, stack),

shares all the resources that the process has.
 A program has one process at least, and one

process has one thread at least

SHANDONG UNIVERSITY 11

Implementation
 User Level Thread
 Kernel level thread
 Hybrid method

SHANDONG UNIVERSITY 12

User Threads
 Thread management done by user-level

threads library
 Kernel knows nothing about threads

SHANDONG UNIVERSITY 13

User thread

运行系统

TCB
进程

线程

核心栈 进程表

用
户
空
间

系
统
空
间

SHANDONG UNIVERSITY 14

User thread

SHANDONG UNIVERSITY 15

User thread
 Implemented by thread library
 Create, cancellation
 Transfer data or message
 Save and recover the context of threads

 The kernel manage the process, but know
nothing about thread

 When a thread have a system call, the process
will be blocked. To thread library, the thread’s
state is running

SHANDONG UNIVERSITY 16

User thread
 Three primary thread libraries:
 POSIX Pthreads
 Win32 threads
 Java threads

SHANDONG UNIVERSITY 17

Advantages & Disadvantages
 Advantages
 It does not need to call the kernel when there is

thread switching.
 Scheduling is determined by application, so best

algorithm can be selected.
 ULT can run on any platform if the thread library is

install on it.
 Disadvantages
 Most system call will result in blocking
 Two threads in the same process can not

simultaneously run on two processors

SHANDONG UNIVERSITY 18

Kernel Threads
 Supported by the Kernel
 All threads are managed by the kernel
 Create, cancellation and schedule
 No thread library, but provide API
 Kernel maintains context of threads and processes
 The switch between threads needs the support of kernel

 Examples
 Windows XP/2000
 Solaris
 Linux
 Tru64 UNIX
 Mac OS X

SHANDONG UNIVERSITY 19

Kernel Threads

进程

线程

核心栈 进程表

用
户
空
间

系
统
空
间

TCB

SHANDONG UNIVERSITY 20

Advantages & Disadvantages
 Advantages
 For multiprocessor system, more than one thread

can run simultaneously
 Just block the thread, not process

 Disadvantage
 The switch between threads in the same process,

will slow the speed.

SHANDONG UNIVERSITY 21

Hybrid model
 Thread is created in user space

SHANDONG UNIVERSITY 22

Multithreading Models
 Many-to-One

 One-to-One

 Many-to-Many

SHANDONG UNIVERSITY 23

Many-to-One
 Many user-level threads mapped to single

kernel thread
 Examples:
 Solaris Green Threads
 GNU Portable Threads

 Advantage
 Management is efficient

 Disadvantages
 Process is blocked when one thread is blocked
 Can’t utilize multi-processors system

SHANDONG UNIVERSITY 24

Many-to-One Model

SHANDONG UNIVERSITY 25

One-to-One
 Each user-level thread maps to one kernel

thread
 Examples
 Windows NT/XP/2000
 Linux
 Solaris 9 and later

 Advantage
 Can run on multiprocessor system
 One blocked, others can run still

 Disadvantage
 To create one user thread, one kernel thread is

also created.

SHANDONG UNIVERSITY 26

One-to-one Model

SHANDONG UNIVERSITY 27

Many-to-Many Model
 Allows many user level threads to be mapped

to many kernel threads
 Allows the operating system to create a

sufficient number of kernel threads
 Solaris prior to version 9
 Windows NT/2000 with the ThreadFiber

package

SHANDONG UNIVERSITY 28

Many-to-Many Model

SHANDONG UNIVERSITY 29

Two-level Model
 Similar to M:M, except that it allows a user

thread to be bound to kernel thread
 Examples
 IRIX
 HP-UX
 Tru64 UNIX
 Solaris 8 and earlier

SHANDONG UNIVERSITY 30

Two-level Model

SHANDONG UNIVERSITY 31

Threading Issues
 Semantics of fork() and exec() system calls
 Thread cancellation
 Signal handling
 Thread pools
 Thread specific data
 Scheduler activations

SHANDONG UNIVERSITY 32

Semantics of fork() and exec()
 Does fork() duplicate only the calling thread or

all threads?
 Exec() is after fork()
 No exec() after fork()

SHANDONG UNIVERSITY 33

Thread Cancellation
 Terminating a thread before it has finished
 Search database
 Web pages

 Two general approaches:
 Asynchronous cancellation terminates the target

thread immediately
 Deferred cancellation allows the target thread to

periodically check if it should be cancelled
 Cancellation point

SHANDONG UNIVERSITY 34

Signal Handling
 Signals are used in UNIX systems to notify a process

that a particular event has occurred
 Synchronous
 Asynchronous

 A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

 Options:
 Deliver the signal to the thread to which the signal applies
 Deliver the signal to every thread in the process
 Deliver the signal to certain threads in the process
 Assign a specific thread to receive all signals for the process

SHANDONG UNIVERSITY 35

Thread Pools
 Problems in multithread server:
 Spend much time to create thread
 Resources will be exhausted if no limitation to

thread
 Create a number of threads in a pool where

they await work
 Advantages:
 Usually slightly faster to service a request with an

existing thread than create a new thread
 Allows the number of threads in the application(s)

to be bound to the size of the pool

SHANDONG UNIVERSITY 36

Thread Specific Data
 Allows each thread to have its own copy of

data
 Example—transaction processing system

SHANDONG UNIVERSITY 37

Scheduler Activations
 Both N:M and Two-level models require

communication to maintain the appropriate
number of kernel threads allocated to the
application

 Scheduler activations provide upcalls - a
communication mechanism from the kernel to
the thread library

 This communication allows an application to
maintain the correct number kernel threads

SHANDONG UNIVERSITY 38

Pthreads
 A POSIX standard (IEEE 1003.1c) API for

thread creation and synchronization
 API specifies behavior of the thread library,

implementation is up to development of the
library

 Common in UNIX operating systems (Solaris,
Linux, Mac OS X)

SHANDONG UNIVERSITY 39

Pthreads
#include<pthread.h>
#include<stdio.h>
int sum; /*this data is shared by the thread(s) */
void *runner(void *param); /*the thread*/

Main(int argc, char *argv[])
{

pthread_t tid; /*the thread identifier*/
pthread_attr_t attr; /* set of attributes for the thread*/
pthread_attr_init(&attr);
pthread_create(&tid, &attr, runner, argv[1]);
pthread_join(tid, NULL);
printf(“sum= %d\n”, sum);

}

void *runner(void *param)
{

int upper = atoi(param);
int I;
sum = 0;
if (upper > 0) {

for (I = 1; I <= upper; I ++)
sum += I;

}
pthread_exit(0);

}

SHANDONG UNIVERSITY 40

Windows XP Threads
 Implements the one-to-one mapping
 Each thread contains
 A thread id
 Register set
 Separate user and kernel stacks
 Private data storage area

 The register set, stacks, and private storage area are
known as the context of the threads

 The primary data structures of a thread include:
 ETHREAD (executive thread block)
 KTHREAD (kernel thread block)
 TEB (thread environment block)

SHANDONG UNIVERSITY 41

Linux Threads
 Linux refers to them as tasks rather than

threads
 Thread creation is done through clone()

system call
 clone() allows a child task to share the

address space of the parent task (process)

SHANDONG UNIVERSITY 42

Java Threads
 Java threads are managed by the JVM

 Java threads may be created by:

 Extending Thread class
 Implementing the Runnable interface

SHANDONG UNIVERSITY 43

Extending Thread class
class Worker1 extends Thread
{

public void run() {
System.out.println(“I Am a Worker Thread”);

}
}

public class First
{

public static void main(String args[]) {
Worker1 runner = new Worker1();
runner.start();

System.out.println(“I Am The Main Thread”);
}

}

SHANDONG UNIVERSITY 44

Runnable interface
public interface Runnable
{

public abstract void run();
}

SHANDONG UNIVERSITY 45

Implementing the Runnable interface
class Worker2 implements Runnable {

public void run() {
System.out.println(“I Am a Worker Thread”);

}
}

public class Second {
public static void main(String argc[]) {

Runnable runner = new Worker2();
Thread thrd = new Thread(runner);
thrd.start();

System.out.println(“I Am The Main Thread”);
}

}

SHANDONG UNIVERSITY 46

Java Thread States

SHANDONG UNIVERSITY 47

Joining Threads
class JoinableWorker implements Runnable {

public void run() {
System.out.println(“Worker working”);

}
}

public class JoinExample {
public static void main(String [] args) {

Thread task = new Thread(new JoinableWorker());
task.start();

try { task.join(); }
catch (InterruptedException ie) { }
System.out.println(“Worker done”);

}
}

SHANDONG UNIVERSITY 48

Thread cancellation
Thread thrd = new Thread(new

InterruptibleThread());
thrd.start();

…

//now interrupt it
thrd.interrupt();

SHANDONG UNIVERSITY 49

Thread cancellation
public class InterruptibleThread implements Runnable {

public void run() {
while (true) {

…
if (Thread.currentThread().isInterrupted())

{
System.out.println();
break;

} /* 线程取消点 */
}
//clean up and terminate

}
}

SHANDONG UNIVERSITY 50

Thread data
Class Service {

private static ThreadLocal errorCode = new ThreadLocal();

public static void transaction() {
try {
}
catch (Exception e) {

errorCode.set(e);
}

}

public static Object getErrorCode() {
return errorCode.get();

}
}

SHANDONG UNIVERSITY 51

class Worker implements Runnable {
private static Service provider; //线程特定数据

public void run() {
provider.transaction();
System.out.println(provider.getErrorCode());

}
}

SHANDONG UNIVERSITY 52

Producer-consumer problem
public class Factory {

public Factory() {
Channel mailBox = new MessageQueue();
Thread producerThread = new Thread(new Producer(mailBox));
Thread consumerThread = new Thread(new

Consumer(mailBox));
producerThread.start();
consumerThread.start();

}

public static void main(String args[]) {
Factory server = new Factory();

}
}

SHANDONG UNIVERSITY 53

Producer thread
class Producer implements Runnable {

private Channel mbox;

public Producer(Channel mbox) {
this.mbox = mbox;

}

public void run() {
Date message;
while (true) {

SleepUtilities.nap(); //小睡片刻
message = new Date();
System.out.println(“Producer produced” + message);
mbox.send(message);

}
}

}

SHANDONG UNIVERSITY 54

Consumer thread
class Consumer implements Runnable {

private Channel mbox;

public Consumer(Channel mbox) {
this.mbox = mbox;

}

public void run() {
Date message;
while (true) {

SleepUtilities.nap();
System.out.println(“Consumer wants to consume.”);
message = (Date) mbox.receive();
if (message != null)

System.out.println(“Consumer consumed” + message);
}

}
}

SHANDONG UNIVERSITY 55

Assignment
 4.2, 4.4, 4.5

End of Chapter 4

Any Question?

	Chapter 4
	Contents
	Objectives
	Thread
	Motivation
	Motivation --- example
	Single and Multithreaded Processes
	Benefits
	Thread
	Thread & Process
	Implementation
	User Threads
	User thread
	User thread
	User thread
	User thread
	Advantages & Disadvantages
	Kernel Threads
	Kernel Threads
	Advantages & Disadvantages
	Hybrid model
	Multithreading Models
	Many-to-One
	Many-to-One Model
	One-to-One
	One-to-one Model
	Many-to-Many Model
	Many-to-Many Model
	Two-level Model
	Two-level Model
	Threading Issues
	Semantics of fork() and exec()
	Thread Cancellation
	Signal Handling
	Thread Pools
	Thread Specific Data
	Scheduler Activations
	Pthreads
	Pthreads
	Windows XP Threads
	Linux Threads
	Java Threads
	Extending Thread class
	Runnable interface
	Implementing the Runnable interface
	Java Thread States
	Joining Threads
	Thread cancellation
	Thread cancellation
	Thread data
	幻灯片编号 51
	Producer-consumer problem
	Producer thread
	Consumer thread
	Assignment
	End of Chapter 4

