
Chapter 4

Threads

SHANDONG UNIVERSITY 2

Contents
 Overview
 Multithreading Models
 Threading Issues
 Pthreads
 Windows XP Threads
 Linux Threads
 Java Threads

SHANDONG UNIVERSITY 3

Objectives
 To introduce the notion of a thread---a

fundamental unit of CPU utilization that forms
the basis of multithread computer system.

 To discuss the APIs for Pthreads, Win32, and
Java thread libraries.

SHANDONG UNIVERSITY 4

Thread
 A thread
 A running entity of a process, and a unit that can

be scheduled independently.
 A basic unit of CPU utilization

SHANDONG UNIVERSITY 5

Motivation
 When increase the concurrence of system, the

time spent on process creation, process
cancellation, process exchange will increase
greatly

 In addition, the communication between
processes is also limited.

SHANDONG UNIVERSITY 6

Motivation --- example
 Suppose there is a web server
 What is the result if there is only one thread?
 The time to create
 The time to exchange
 The space for each user

 A program will accept input from user, list the
menu, execute the command
 What is the result if there is only one thread?

SHANDONG UNIVERSITY 7

Single and Multithreaded Processes

SHANDONG UNIVERSITY 8

Benefits
 Responsiveness

 Resource Sharing

 Economy

 Utilization of MP Architectures

SHANDONG UNIVERSITY 9

Thread
 A thread
 A running entity of a process, and a unit that can

be scheduled independently.
 A basic unit of CPU utilization

 Resources still belong to process
 Code section
 Data section
 Open files
 Signals

SHANDONG UNIVERSITY 10

Thread & Process
 Process is the owner of resources
 Code section
 Data section
 Open files
 Signals

 Thread is a running unit (smallest unit)
 Thread has few resources (counter, register, stack),

shares all the resources that the process has.
 A program has one process at least, and one

process has one thread at least

SHANDONG UNIVERSITY 11

Implementation
 User Level Thread
 Kernel level thread
 Hybrid method

SHANDONG UNIVERSITY 12

User Threads
 Thread management done by user-level

threads library
 Kernel knows nothing about threads

SHANDONG UNIVERSITY 13

User thread

运行系统

TCB
进程

线程

核心栈 进程表

用
户
空
间

系
统
空
间

SHANDONG UNIVERSITY 14

User thread

SHANDONG UNIVERSITY 15

User thread
 Implemented by thread library
 Create, cancellation
 Transfer data or message
 Save and recover the context of threads

 The kernel manage the process, but know
nothing about thread

 When a thread have a system call, the process
will be blocked. To thread library, the thread’s
state is running

SHANDONG UNIVERSITY 16

User thread
 Three primary thread libraries:
 POSIX Pthreads
 Win32 threads
 Java threads

SHANDONG UNIVERSITY 17

Advantages & Disadvantages
 Advantages
 It does not need to call the kernel when there is

thread switching.
 Scheduling is determined by application, so best

algorithm can be selected.
 ULT can run on any platform if the thread library is

install on it.
 Disadvantages
 Most system call will result in blocking
 Two threads in the same process can not

simultaneously run on two processors

SHANDONG UNIVERSITY 18

Kernel Threads
 Supported by the Kernel
 All threads are managed by the kernel
 Create, cancellation and schedule
 No thread library, but provide API
 Kernel maintains context of threads and processes
 The switch between threads needs the support of kernel

 Examples
 Windows XP/2000
 Solaris
 Linux
 Tru64 UNIX
 Mac OS X

SHANDONG UNIVERSITY 19

Kernel Threads

进程

线程

核心栈 进程表

用
户
空
间

系
统
空
间

TCB

SHANDONG UNIVERSITY 20

Advantages & Disadvantages
 Advantages
 For multiprocessor system, more than one thread

can run simultaneously
 Just block the thread, not process

 Disadvantage
 The switch between threads in the same process,

will slow the speed.

SHANDONG UNIVERSITY 21

Hybrid model
 Thread is created in user space

SHANDONG UNIVERSITY 22

Multithreading Models
 Many-to-One

 One-to-One

 Many-to-Many

SHANDONG UNIVERSITY 23

Many-to-One
 Many user-level threads mapped to single

kernel thread
 Examples:
 Solaris Green Threads
 GNU Portable Threads

 Advantage
 Management is efficient

 Disadvantages
 Process is blocked when one thread is blocked
 Can’t utilize multi-processors system

SHANDONG UNIVERSITY 24

Many-to-One Model

SHANDONG UNIVERSITY 25

One-to-One
 Each user-level thread maps to one kernel

thread
 Examples
 Windows NT/XP/2000
 Linux
 Solaris 9 and later

 Advantage
 Can run on multiprocessor system
 One blocked, others can run still

 Disadvantage
 To create one user thread, one kernel thread is

also created.

SHANDONG UNIVERSITY 26

One-to-one Model

SHANDONG UNIVERSITY 27

Many-to-Many Model
 Allows many user level threads to be mapped

to many kernel threads
 Allows the operating system to create a

sufficient number of kernel threads
 Solaris prior to version 9
 Windows NT/2000 with the ThreadFiber

package

SHANDONG UNIVERSITY 28

Many-to-Many Model

SHANDONG UNIVERSITY 29

Two-level Model
 Similar to M:M, except that it allows a user

thread to be bound to kernel thread
 Examples
 IRIX
 HP-UX
 Tru64 UNIX
 Solaris 8 and earlier

SHANDONG UNIVERSITY 30

Two-level Model

SHANDONG UNIVERSITY 31

Threading Issues
 Semantics of fork() and exec() system calls
 Thread cancellation
 Signal handling
 Thread pools
 Thread specific data
 Scheduler activations

SHANDONG UNIVERSITY 32

Semantics of fork() and exec()
 Does fork() duplicate only the calling thread or

all threads?
 Exec() is after fork()
 No exec() after fork()

SHANDONG UNIVERSITY 33

Thread Cancellation
 Terminating a thread before it has finished
 Search database
 Web pages

 Two general approaches:
 Asynchronous cancellation terminates the target

thread immediately
 Deferred cancellation allows the target thread to

periodically check if it should be cancelled
 Cancellation point

SHANDONG UNIVERSITY 34

Signal Handling
 Signals are used in UNIX systems to notify a process

that a particular event has occurred
 Synchronous
 Asynchronous

 A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

 Options:
 Deliver the signal to the thread to which the signal applies
 Deliver the signal to every thread in the process
 Deliver the signal to certain threads in the process
 Assign a specific thread to receive all signals for the process

SHANDONG UNIVERSITY 35

Thread Pools
 Problems in multithread server:
 Spend much time to create thread
 Resources will be exhausted if no limitation to

thread
 Create a number of threads in a pool where

they await work
 Advantages:
 Usually slightly faster to service a request with an

existing thread than create a new thread
 Allows the number of threads in the application(s)

to be bound to the size of the pool

SHANDONG UNIVERSITY 36

Thread Specific Data
 Allows each thread to have its own copy of

data
 Example—transaction processing system

SHANDONG UNIVERSITY 37

Scheduler Activations
 Both N:M and Two-level models require

communication to maintain the appropriate
number of kernel threads allocated to the
application

 Scheduler activations provide upcalls - a
communication mechanism from the kernel to
the thread library

 This communication allows an application to
maintain the correct number kernel threads

SHANDONG UNIVERSITY 38

Pthreads
 A POSIX standard (IEEE 1003.1c) API for

thread creation and synchronization
 API specifies behavior of the thread library,

implementation is up to development of the
library

 Common in UNIX operating systems (Solaris,
Linux, Mac OS X)

SHANDONG UNIVERSITY 39

Pthreads
#include<pthread.h>
#include<stdio.h>
int sum; /*this data is shared by the thread(s) */
void *runner(void *param); /*the thread*/

Main(int argc, char *argv[])
{

pthread_t tid; /*the thread identifier*/
pthread_attr_t attr; /* set of attributes for the thread*/
pthread_attr_init(&attr);
pthread_create(&tid, &attr, runner, argv[1]);
pthread_join(tid, NULL);
printf(“sum= %d\n”, sum);

}

void *runner(void *param)
{

int upper = atoi(param);
int I;
sum = 0;
if (upper > 0) {

for (I = 1; I <= upper; I ++)
sum += I;

}
pthread_exit(0);

}

SHANDONG UNIVERSITY 40

Windows XP Threads
 Implements the one-to-one mapping
 Each thread contains
 A thread id
 Register set
 Separate user and kernel stacks
 Private data storage area

 The register set, stacks, and private storage area are
known as the context of the threads

 The primary data structures of a thread include:
 ETHREAD (executive thread block)
 KTHREAD (kernel thread block)
 TEB (thread environment block)

SHANDONG UNIVERSITY 41

Linux Threads
 Linux refers to them as tasks rather than

threads
 Thread creation is done through clone()

system call
 clone() allows a child task to share the

address space of the parent task (process)

SHANDONG UNIVERSITY 42

Java Threads
 Java threads are managed by the JVM

 Java threads may be created by:

 Extending Thread class
 Implementing the Runnable interface

SHANDONG UNIVERSITY 43

Extending Thread class
class Worker1 extends Thread
{

public void run() {
System.out.println(“I Am a Worker Thread”);

}
}

public class First
{

public static void main(String args[]) {
Worker1 runner = new Worker1();
runner.start();

System.out.println(“I Am The Main Thread”);
}

}

SHANDONG UNIVERSITY 44

Runnable interface
public interface Runnable
{

public abstract void run();
}

SHANDONG UNIVERSITY 45

Implementing the Runnable interface
class Worker2 implements Runnable {

public void run() {
System.out.println(“I Am a Worker Thread”);

}
}

public class Second {
public static void main(String argc[]) {

Runnable runner = new Worker2();
Thread thrd = new Thread(runner);
thrd.start();

System.out.println(“I Am The Main Thread”);
}

}

SHANDONG UNIVERSITY 46

Java Thread States

SHANDONG UNIVERSITY 47

Joining Threads
class JoinableWorker implements Runnable {

public void run() {
System.out.println(“Worker working”);

}
}

public class JoinExample {
public static void main(String [] args) {

Thread task = new Thread(new JoinableWorker());
task.start();

try { task.join(); }
catch (InterruptedException ie) { }
System.out.println(“Worker done”);

}
}

SHANDONG UNIVERSITY 48

Thread cancellation
Thread thrd = new Thread(new

InterruptibleThread());
thrd.start();

…

//now interrupt it
thrd.interrupt();

SHANDONG UNIVERSITY 49

Thread cancellation
public class InterruptibleThread implements Runnable {

public void run() {
while (true) {

…
if (Thread.currentThread().isInterrupted())

{
System.out.println();
break;

} /* 线程取消点 */
}
//clean up and terminate

}
}

SHANDONG UNIVERSITY 50

Thread data
Class Service {

private static ThreadLocal errorCode = new ThreadLocal();

public static void transaction() {
try {
}
catch (Exception e) {

errorCode.set(e);
}

}

public static Object getErrorCode() {
return errorCode.get();

}
}

SHANDONG UNIVERSITY 51

class Worker implements Runnable {
private static Service provider; //线程特定数据

public void run() {
provider.transaction();
System.out.println(provider.getErrorCode());

}
}

SHANDONG UNIVERSITY 52

Producer-consumer problem
public class Factory {

public Factory() {
Channel mailBox = new MessageQueue();
Thread producerThread = new Thread(new Producer(mailBox));
Thread consumerThread = new Thread(new

Consumer(mailBox));
producerThread.start();
consumerThread.start();

}

public static void main(String args[]) {
Factory server = new Factory();

}
}

SHANDONG UNIVERSITY 53

Producer thread
class Producer implements Runnable {

private Channel mbox;

public Producer(Channel mbox) {
this.mbox = mbox;

}

public void run() {
Date message;
while (true) {

SleepUtilities.nap(); //小睡片刻
message = new Date();
System.out.println(“Producer produced” + message);
mbox.send(message);

}
}

}

SHANDONG UNIVERSITY 54

Consumer thread
class Consumer implements Runnable {

private Channel mbox;

public Consumer(Channel mbox) {
this.mbox = mbox;

}

public void run() {
Date message;
while (true) {

SleepUtilities.nap();
System.out.println(“Consumer wants to consume.”);
message = (Date) mbox.receive();
if (message != null)

System.out.println(“Consumer consumed” + message);
}

}
}

SHANDONG UNIVERSITY 55

Assignment
 4.2, 4.4, 4.5

End of Chapter 4

Any Question?

	Chapter 4
	Contents
	Objectives
	Thread
	Motivation
	Motivation --- example
	Single and Multithreaded Processes
	Benefits
	Thread
	Thread & Process
	Implementation
	User Threads
	User thread
	User thread
	User thread
	User thread
	Advantages & Disadvantages
	Kernel Threads
	Kernel Threads
	Advantages & Disadvantages
	Hybrid model
	Multithreading Models
	Many-to-One
	Many-to-One Model
	One-to-One
	One-to-one Model
	Many-to-Many Model
	Many-to-Many Model
	Two-level Model
	Two-level Model
	Threading Issues
	Semantics of fork() and exec()
	Thread Cancellation
	Signal Handling
	Thread Pools
	Thread Specific Data
	Scheduler Activations
	Pthreads
	Pthreads
	Windows XP Threads
	Linux Threads
	Java Threads
	Extending Thread class
	Runnable interface
	Implementing the Runnable interface
	Java Thread States
	Joining Threads
	Thread cancellation
	Thread cancellation
	Thread data
	幻灯片编号 51
	Producer-consumer problem
	Producer thread
	Consumer thread
	Assignment
	End of Chapter 4

