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Objectives
 To introduce the notion of a thread---a 

fundamental unit of CPU utilization that forms 
the basis of multithread computer system.

 To discuss the APIs for Pthreads, Win32, and 
Java thread libraries.
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Thread
 A thread
 A running entity of a process, and a unit that can 

be scheduled independently.
 A basic unit of CPU utilization



SHANDONG UNIVERSITY 5

Motivation
 When increase the concurrence of system, the 

time spent on process creation, process 
cancellation, process exchange will increase 
greatly

 In addition, the communication between 
processes is also limited.
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Motivation --- example
 Suppose there is a web server
 What is the result if there is only one thread?
 The time to create
 The time to exchange
 The space for each user

 A program will accept input from user, list the 
menu, execute the command
 What is the result if there is only one thread?
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Single and Multithreaded Processes
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Benefits
 Responsiveness

 Resource Sharing

 Economy

 Utilization of MP Architectures
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Thread
 A thread
 A running entity of a process, and a unit that can 

be scheduled independently.
 A basic unit of CPU utilization

 Resources still belong to process
 Code section
 Data section
 Open files
 Signals
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Thread & Process
 Process is the owner of resources
 Code section
 Data section
 Open files
 Signals

 Thread is a running unit (smallest unit)
 Thread has few resources (counter, register, stack), 

shares all the resources that the process has.
 A program has one process at least, and one 

process has one thread at least
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Implementation
 User Level Thread
 Kernel level thread
 Hybrid method
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User Threads
 Thread management done by user-level 

threads library
 Kernel knows nothing about threads
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User thread
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User thread
 Implemented by thread library
 Create, cancellation
 Transfer data or message
 Save and recover the context of threads

 The kernel manage the process, but know 
nothing about thread

 When a thread have a system call, the process 
will be blocked. To thread library, the thread’s 
state is running
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User thread
 Three primary thread libraries:
 POSIX Pthreads
 Win32 threads
 Java threads
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Advantages & Disadvantages
 Advantages
 It does not need to call the kernel when there is 

thread switching.
 Scheduling is determined by application, so best 

algorithm can be selected.
 ULT can run on any platform if the thread library is 

install on it.
 Disadvantages
 Most system call will result in blocking
 Two threads in the same process can not 

simultaneously run on two processors 
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Kernel Threads
 Supported by the Kernel
 All threads are managed by the kernel
 Create, cancellation and schedule
 No thread library, but provide API
 Kernel maintains context of threads and processes 
 The switch between threads needs the support of kernel  

 Examples
 Windows XP/2000
 Solaris
 Linux
 Tru64 UNIX
 Mac OS X
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Kernel Threads
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Advantages & Disadvantages
 Advantages
 For multiprocessor system, more than one thread 

can run simultaneously
 Just block the thread, not process

 Disadvantage
 The switch between threads in the same process, 

will slow the speed.
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Hybrid model
 Thread is created in user space
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Multithreading Models
 Many-to-One

 One-to-One

 Many-to-Many
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Many-to-One
 Many user-level threads mapped to single 

kernel thread
 Examples:
 Solaris Green Threads
 GNU Portable Threads

 Advantage
 Management is efficient

 Disadvantages
 Process is blocked when one thread is blocked
 Can’t utilize multi-processors system
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Many-to-One Model
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One-to-One
 Each user-level thread maps to one kernel 

thread
 Examples
 Windows NT/XP/2000
 Linux
 Solaris 9 and later

 Advantage
 Can run on multiprocessor system
 One blocked, others can run still

 Disadvantage
 To create one user thread, one kernel thread is 

also created.
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One-to-one Model
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Many-to-Many Model
 Allows many user level threads to be mapped 

to many kernel threads
 Allows the  operating system to create a 

sufficient number of kernel threads
 Solaris prior to version 9
 Windows NT/2000 with the ThreadFiber

package
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Many-to-Many Model
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Two-level Model
 Similar to M:M, except that it allows a user 

thread to be bound to kernel thread
 Examples
 IRIX
 HP-UX
 Tru64 UNIX
 Solaris 8 and earlier
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Two-level Model
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Threading Issues
 Semantics of fork() and exec() system calls
 Thread cancellation
 Signal handling
 Thread pools
 Thread specific data
 Scheduler activations
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Semantics of fork() and exec()
 Does fork() duplicate only the calling thread or 

all threads?
 Exec() is after fork()
 No exec() after fork()
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Thread Cancellation
 Terminating a thread before it has finished
 Search database
 Web pages

 Two general approaches:
 Asynchronous cancellation terminates the target 

thread  immediately
 Deferred cancellation allows the target thread to 

periodically check if it should be cancelled
 Cancellation point
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Signal Handling
 Signals are used in UNIX systems to notify a process 

that a particular event has occurred
 Synchronous
 Asynchronous 

 A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

 Options:
 Deliver the signal to the thread to which the signal applies
 Deliver the signal to every thread in the process
 Deliver the signal to certain threads in the process
 Assign a specific thread to receive all signals for the process
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Thread Pools
 Problems in multithread server:
 Spend much time to create thread
 Resources will be exhausted if no limitation to 

thread
 Create a number of threads in a pool where 

they await work
 Advantages:
 Usually slightly faster to service a request with an 

existing thread than create a new thread
 Allows the number of threads in the application(s) 

to be bound to the size of the pool
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Thread Specific Data
 Allows each thread to have its own copy of 

data
 Example—transaction processing system
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Scheduler Activations
 Both N:M and Two-level models require 

communication to maintain the appropriate 
number of kernel threads allocated to the 
application

 Scheduler activations provide upcalls - a 
communication mechanism from the kernel to 
the thread library

 This communication allows an application to 
maintain the correct number kernel threads
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Pthreads
 A POSIX standard (IEEE 1003.1c) API for 

thread creation and synchronization
 API specifies behavior of the thread library, 

implementation is up to development of the 
library

 Common in UNIX operating systems (Solaris, 
Linux, Mac OS X)
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Pthreads
#include<pthread.h>
#include<stdio.h>
int sum; /*this data is shared by the thread(s) */
void *runner(void *param); /*the thread*/

Main(int argc, char *argv[])
{

pthread_t tid; /*the thread identifier*/
pthread_attr_t attr; /* set of attributes for the thread*/
pthread_attr_init(&attr);
pthread_create(&tid, &attr, runner, argv[1]);
pthread_join(tid, NULL);
printf(“sum= %d\n”, sum);

}

void *runner(void *param)
{

int upper = atoi(param);
int I;
sum = 0;
if (upper > 0) {

for (I = 1; I <= upper; I ++)
sum += I;

}
pthread_exit(0);

}
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Windows XP Threads
 Implements the one-to-one mapping
 Each thread contains
 A thread id
 Register set
 Separate user and kernel stacks
 Private data storage area

 The register set, stacks, and private storage area are 
known as the context of the threads

 The primary data structures of a thread include:
 ETHREAD (executive thread block)
 KTHREAD (kernel thread block)
 TEB (thread environment block)
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Linux Threads
 Linux refers to them as tasks rather than 

threads
 Thread creation is done through clone()

system call
 clone() allows a child task to share the 

address space of the parent task (process)
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Java Threads
 Java threads are managed by the JVM

 Java threads may be created by:

 Extending Thread class
 Implementing the Runnable interface
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Extending Thread class
class Worker1 extends Thread
{

public void run() {
System.out.println(“I Am a Worker Thread”);

}
}

public class First
{

public static void main(String args[]) {
Worker1 runner = new Worker1();
runner.start();

System.out.println(“I Am The Main Thread”);
}

}
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Runnable interface
public interface Runnable
{

public abstract void run();
}
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Implementing the Runnable interface
class Worker2 implements Runnable {

public void run() {
System.out.println(“I Am a Worker Thread”);

}
}

public class Second {
public static void main(String argc[]) {

Runnable runner = new Worker2();
Thread thrd = new Thread(runner);
thrd.start();

System.out.println(“I Am The Main Thread”);
}

}
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Java Thread States
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Joining Threads
class JoinableWorker implements Runnable {

public void run() {
System.out.println(“Worker working”);

}
}

public class JoinExample {
public static void main(String [] args) {

Thread task = new Thread(new JoinableWorker());
task.start();

try { task.join(); }
catch (InterruptedException ie) { }
System.out.println(“Worker done”);

}
}
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Thread cancellation
Thread thrd = new Thread(new 

InterruptibleThread());
thrd.start();

…

//now interrupt it
thrd.interrupt();
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Thread cancellation
public class InterruptibleThread implements Runnable {

public void run() {
while (true) {

…
if (Thread.currentThread().isInterrupted()) 

{
System.out.println();
break;

}   /* 线程取消点 */
}
//clean up and terminate

}
}
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Thread data
Class Service {

private static ThreadLocal errorCode = new ThreadLocal();

public static void transaction() {
try {
}
catch (Exception e) {

errorCode.set(e);
}

}

public static Object getErrorCode() {
return errorCode.get();

}
}
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class Worker implements Runnable {
private static Service provider; //线程特定数据

public void run() {
provider.transaction();
System.out.println(provider.getErrorCode());

}
}
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Producer-consumer problem
public class Factory {

public Factory() {
Channel mailBox = new MessageQueue();
Thread producerThread = new Thread(new Producer(mailBox));
Thread consumerThread = new Thread(new 

Consumer(mailBox));
producerThread.start();
consumerThread.start();

}

public static void main(String args[]) {
Factory server = new Factory();

}
}
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Producer thread
class Producer implements Runnable {

private Channel mbox;

public Producer(Channel mbox) {
this.mbox = mbox;

}

public void run() {
Date message;
while (true) {

SleepUtilities.nap(); //小睡片刻
message = new Date();
System.out.println(“Producer produced” + message);
mbox.send(message);

}
}

}
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Consumer thread
class Consumer implements Runnable {

private Channel mbox;

public Consumer(Channel mbox) {
this.mbox = mbox;

}

public void run() {
Date message;
while (true) {

SleepUtilities.nap();
System.out.println(“Consumer wants to consume.”);
message = (Date) mbox.receive();
if (message != null)

System.out.println(“Consumer consumed” + message);
}

}
}
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Assignment
 4.2, 4.4, 4.5



End of Chapter 4

Any Question?
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