
Chapter 6

Process Synchronization
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Objectives
 To introduce the critical section problem, 

whose solutions can be used to ensure the 
consistency of shared data

 To present both software and hardware 
solutions of the critical-section problem

 To introduce the concept of atomic transaction 
and describe mechanisms to ensure atomicity
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Background
 Concurrent access to shared data may result in 

data inconsistency
 Maintaining data consistency requires 

mechanisms to ensure the orderly execution of 
cooperating processes
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Producer and Consumer Problem

0    1            ……          k-1

箱子，容量k

B:Array[0..k-1]Of item

生产者 消费者

生产物品
放入B中

B中取物品
消费之
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Shared-Memory Solution
 Shared data

#define BUFFER_SIZE 10
Typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

缓冲区下一个空位

缓冲区第一个非空位
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Producer Process
item nextProduced;

while (1) {
while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

}
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Consumer Process
item nextConsumed;

while (1) {
while (in == out)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

}
 Problem: Solution is correct, but can only use 

BUFFER_SIZE-1 elements
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One solution to this problem
 Suppose that we wanted to provide a solution 

to the consumer-producer problem that fills all 
the buffers. We can do so by having an integer 
counter that keeps track of the number of full 
buffers.  Initially, count is set to 0. It is 
incremented by the producer after it produces 
a new buffer and is decremented by the 
consumer after it consumes a buffer.
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Producer
while (true) {

/*  produce an item and put in nextProduced  */
while (counter == BUFFER_SIZE)

; // do nothing
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}
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Consumer
while (true)  {

while (counter == 0)
; // do nothing
nextConsumed =  buffer[out];
out = (out + 1) % BUFFER_SIZE;

counter--;

/*  consume the item in nextConsumed
}
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Problem
 counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

 counter-- could be implemented as
register2 = counter
register2 = register2 - 1
counter = register2

 Consider this execution interleaving with “counter = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1  {register1 = 6} 
S2: consumer execute register2 = counter {register2 = 5} 
S3: consumer execute register2 = register2 - 1 {register2 = 4} 
S4: producer execute counter = register1 {counter = 6 } 
S5: consumer execute counter = register2 {counter = 4}



SHANDONG UNIVERSITY 13

Race Condition
 A situation that when several processes 

access and manipulate the same data 
concurrently and the outcome of the execution 
depends on the particular order in which the 
access takes place, is called a race condition

 So we must guarantee that only one process 
can operate the variable.
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Background
 Concurrent access to shared data may result in 

data inconsistency
 Maintaining data consistency requires 

mechanisms to ensure the orderly execution of 
cooperating processes
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Critical-Section
 The segment of code in which the process may 

be changing common variables, updating a 
table, writing a file, and so on, is called critical 
section

Do{

critical section

remainder section
}while(1)

entry section

exit section
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Critical-Section Problem
 The Critical-Section Problem is to design a 

protocol that the processes can use to 
cooperate.
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Solution to Critical-Section Problem
1. Mutual Exclusion - If process Pi is executing in its critical 

section, then no other processes can be executing in their 
critical sections

2. Progress - If no process is executing in its critical section 
and there exist some processes that wish to enter their 
critical section, then only those processes that are not 
executing in their remainder sections can participate in the 
decision on which will enter its critical section next, and this 
selection cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of 
times that other processes are allowed to enter their critical 
sections after a process has made a request to enter its 
critical section and before that request is granted
 Assume that each process executes at a nonzero speed 
 No assumption concerning relative speed of the N processes
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Principles to use critical section
 Only one process in critical section
 If there are many processes that want to enter 

the critical section, one process should be 
allowed within bounded time

 Process can stay in CS within bounded time
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Algorithm 1
One shared integer variable: turn  (0 or 1)
do {

while (turn != i)  ;  //entry section
Critical section

turn = j; //exit section
Remainder section

} while (1);

Is it correct?
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Algorithm 2
do {

flag [i] = true;
while (flag [j])  ; //entry section

critical section
flag [i] = false;  //exit section
remainder section

} while (1);
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Peterson’s Solution
 Two process solution
 Assume that the LOAD and STORE instructions are 

atomic; that is, cannot be interrupted.
 The two processes share two variables:
 int turn; 
 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the 
critical section.  

 The flag array is used to indicate if a process is ready 
to enter the critical section. flag[i] = true implies that 
process Pi is ready!



SHANDONG UNIVERSITY 22

Algorithm for Process Pi

 Process Pi
do {

flag [i] = true;
turn = j;
while (flag [j] && turn = = j) ; //entry
critical section
flag [i] = false;   //exit
remainder section

} while (1);

 Process Pj
do {

flag [j] = true;
turn = i;
while (flag [i] && turn = = i) ; //entry
critical section
flag [j] = false;   //exit section
remainder section

} while (1);



SHANDONG UNIVERSITY 23

Solution to multiprocess problem
 Idea
 Every client will receive a number(1, 2, …, n), the 

client with minimal number will be served first
 Problem
 Can not guarantee that different clients get different 

numbers
 Solution
 Except the number, process’s name is used
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Solution to multiprocess problem
 implementation
 boolean choosing[n];  //false
 int number[n];        //0    
 definition：
max(a0, …, an-1)is the number k, and k≥ai, for 

all i = 0, …, n-1
 (a,b)<(c,d) iff (a<c)or(a=c and b<d)
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Solution to multiprocess problem
Program for pi
do {

choosing [i] = true;
number [i] = max(number[0], number[1], …, number[n-1]) + 1;
choosing [i] = false;
for (j = 0; j < n; j ++) {

while (choosing [j]) ;
while ((number [j] != 0) && (number [j], j) < (number [i], i)) ;

}
critical section
number[i] = 0;
remainder section

} while (1);
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Eisenberg/Mcguire
 Data structure
 enum flag[n] (idle, want_in, in_cs);
 int turn;  //in the range of (0,n-1)
 Initialize all elements of flag to be idle, turn takes 

the value between 0 and n-1. In addition, every 
process has a local variable, as follows:

 int j;  //in the range of (0,n-1)
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Eisenberg/Mcguire
do{

while(true){        
flag[i] = want_in;
j = turn;       
while (j != i){             

if (flag[j] != idle)  j = turn;           
else                j = (j+1)% n; 

}       
flag[i] = in_cs;        j = 0;        
while ((j<n) && (j == i || flag[j] != in_cs))        j ++;  //the # of processes not in_cs+myself
if((j>=n) && (turn ==i || flag[turn]==idle))   //I am the only one whose state is in_cs

break;
}
turn =i;
Critical section
j = (turn+1)% n;
while (flag[j] == idle)     

j = (j+1)% n;
turn = j; flag[i] = idle;            
//Remainder section

}while(true);
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Synchronization Hardware
 Many systems provide hardware support for critical 

section code
 Uniprocessor environment – could disable interrupts
 Currently running code would execute without preemption
 Generally too inefficient on multiprocessor systems
 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware 
instructions
 Atomic = non-interruptable

 TestAndSet: test memory word and set value
 Swap: swap contents of two memory words
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TestAndSet Instruction
 Definition:

boolean TestAndSet (boolean *target)
{

boolean rv = *target;
*target = TRUE;
return rv;

}
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Solution using TestAndSet
 Shared boolean variable lock., initialized to false.
 Solution:

while (true) {
while ( TestAndSet (&lock ))

;   /* do nothing
critical section
lock = FALSE;
//remainder section 

}
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Solution using TestAndSet
do {

waiting[i] = true;
key = true;
while (waiting[i] && key)

key = TestAndSet(lock);
waiting[i] = false;
critical section
j = (i + 1) %n;
while ((j != i) && !waiting[j])

j = (j + 1) %n;
if (j == i)

lock = false;
else

waiting[j] = false;
remainder section

} while (1);

do {
waiting[j] = true;
key = true;
while (waiting[j] && key)

key = TestAndSet(lock);
waiting[j] = false;
critical section
i = (j + 1) %n;
while ((i != j) && !waiting[k])

i = (i + 1) %n;
if (i== j)

lock = false;
else

waiting[i] = false;
remainder section

} while (1);

It must be atomic!
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Swap  Instruction
 Definition:

void Swap (boolean *a, boolean *b)
{

boolean temp = *a;
*a = *b;
*b = temp:

}
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Solution using Swap
 Shared Boolean variable lock initialized to FALSE; Each 

process has a local Boolean variable key.
 Solution:

while (true)  {
key = TRUE;
while ( key == TRUE)

Swap (&lock, &key );
critical section
lock = FALSE;
// remainder section 

}
Give a correct solution using swap()!
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Solution using Swap
do {

waiting[i] = true;
key = true;
while (waiting[i] && key)

swap(lock, key)
waiting[i] = false;
critical section
j = (i + 1) %n;
while ((j != i) && !waiting[j])

j = (j + 1) %n;
if (j == i)

lock = false;
else

waiting[j] = false;
remainder section

} while (1);
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Semaphore
 The hardware-based solutions to the critical-section problem are complicated 

for application programmers to use.
 Synchronization tool that does not require busy waiting 
 Semaphore S – integer variable
 Two standard operations modify S: wait() and signal()

 Originally called P() and V()
 Passeren, Vrijgeven  

 Less complicated
 Can only be accessed via two indivisible (atomic) operations
 wait (S) { 

while S <= 0
; // no-op

S--;
}

 signal (S) { 
S++;

}



SHANDONG UNIVERSITY 36

Semaphore as General Synchronization Tool
 Counting semaphore – integer value can range 

over an unrestricted domain
 Binary semaphore – integer value can range 

only between 0 and 1; can be simpler to 
implement
 Also known as mutex locks

 Can implement a counting semaphore S as a 
binary semaphore
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How to provide mutual exclusion and synchronization

 Provides mutual exclusion
 Semaphore S;    //  initialized to 1
 wait (S);

Critical Section
signal (S);

 Provides synchronization
 P1:

S1;
signal(synch);

 P2:
wait(synch);
S2;
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Semaphore Implementation
 The main disadvantage of the semaphore 

definition given above is that it requires busy 
waiting.

 This type of semaphore is also called a 
spinlock because the process “spins” while 
waiting for the lock.

 This is a waste of CPU time.
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Semaphore Implementation with no Busy waiting
 With each semaphore has an integer value and a list 

of processes list. When a process must wait on a 
semaphore, it is added to the list.
 value (of type integer)
 pointer to next record in the list
Typedef struct{

int value;
struct process *list;

}semphore
 Two operations:
 block – place the process invoking the operation on the 

appropriate waiting queue.
 wakeup – remove one of processes in the waiting queue and 

place it in the ready queue.
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Semaphore Implementation with no Busy waiting (Cont.)
 Implementation of wait:

wait (S){ 
s->value--;
if (s->value < 0) { 

add this process to waiting queue
block();  

}
}

 Implementation of signal:

Signal (S){ 
s->value++;
if (s->value <= 0) { 

remove a process P from the waiting queue
wakeup(P);  }

}
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Deadlock and Starvation
 Deadlock – two or more processes are waiting 

indefinitely for an event that can be caused by only 
one of the waiting processes

 Let S and Q be two semaphores initialized to 1
P0 P1

wait (S); wait (Q);
wait (Q); wait (S);

. .   

. .

. .
signal  (S); signal (Q);
signal (Q); signal (S);

 Starvation – indefinite blocking.  A process may never 
be removed from the semaphore queue in which it is 
suspended.
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Binary Semaphore
 the semaphore value is restricted to 0 and 1. 
 Wait() succeeds only when the semaphore value 

is 1
 Signal() does not change the semaphore value 

when it is 1
 How to implement a counting semaphore S as a 

binary semaphore 
 binary-semaphore S1, S2;
 int C;
 Initialize S1 = 1, S2 = 0, C is equal to S
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Binary Semaphore

 Wait
 wait(S1);
 C--;
 if (C < 0) {
 signal(S1);
 wait(S2);

 }
 signal(S1);

 Signal
 wait(S1);
 C++;
 if (C <= 0)
 signal(S2);

 else
 signal(S1);
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Wait() and signal() operation
 Usually, they are used with pair
 For mutual exclusion, they are in the same 

process
 For synchronization, they are in different 

processes
 If there are wait() operations, the sequence is 

very important. However, it is not important for 
two signal() operations.

 Wait() for synchronization is before that for 
mutual exclusion
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Classical Problems of Synchronization
 Bounded-Buffer Problem
 Readers and Writers Problem
 Dining-Philosophers Problem
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Bounded-Buffer Problem
 N buffers, each can hold one item
 Semaphore mutex initialized to the value 1
 Semaphore full initialized to the value 0
 Semaphore empty initialized to the value N.

0    1            ……          n-1

producer consumer

Put products 
into B

Get products 
from B
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Bounded Buffer Problem (Cont.)
Producer process

while (true)  {

//   produce an item

wait (empty);
wait (mutex);

//  add the item to the  buffer

signal (mutex);
signal (full);

}

Consumer process 

while (true) {
wait (full);
wait (mutex);

//  remove an item from  buffer

signal (mutex);
signal (empty);

//  consume the removed item

}
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Readers-Writers Problem
 A data set is shared among a number of 

concurrent processes
 Readers – only read the data set; they do not

perform any updates
 Writers   – can both read and write.

 Problem – allow multiple readers to read at the 
same time.  Only one single writer can access 
the shared data at the same time.
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Two classes
 The first class
 Writer can access only when this is no reader 

waiting for access
 The second class 
 The writer has a higher priority

 Shared Data
 Data set
 Semaphore mutex initialized to 1.
 Semaphore wrt initialized to 1.
 Integer readcount initialized to 0.
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Readers-Writers Problem (Cont.)
 The structure of a writer process

while (true) {
wait (wrt) ;

//    writing is performed

signal (wrt) ;
}
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Readers-Writers Problem (Cont.)
 The structure of a reader process

while (true) {
wait (mutex) ;
readcount ++ ;
if (readcount == 1)  wait (wrt) ;
signal (mutex)

// reading is performed

wait (mutex) ;
readcount  - - ;
if (readcount  == 0)  signal (wrt) ;
signal (mutex) ;

}
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Problems
 If there are many readers, the writer has no 

chance to access the data.
 Solution
 Once there is a writer to wait for access, the 

following readers will have to wait. When all 
readers finish their operation, then the writer will 
begin to access the data. 

How to implement this solution?
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Readers-Writers Problem (Cont.)

READER
While(true){ 

wait(mutex 3); //ensure at most one reader will go 
//before a pending write

wait(r); 
wait(mutex 1); 

readcount := readcount + 1;           
if readcount = 1 then wait(w);   

signal(mutex 1); 
signal(r); 

signal(mutex 3); 
reading is done 
wait(mutex 1); 

readcount := readcount - 1;
if readcount = 0 then signal(w); 

signal(mutex 1);
}

WRITER
While(ture){ 

wait(mutex 2); 
writecount := writecount + 1; 
if writecount = 1 then wait(r); 

signal(mutex 2); 
wait(w); 

writing is performed
signal(w); 
wait(mutex 2); 
writecount := writecount - 1; 
if writecount = 0 then signal(r); 
signal(mutex 2);

}

 int readcount, writecount; (initial value = 0) 
 semaphore mutex 1, mutex 2, mutex 3, w, r ; (initial value = 1)

演示者
演示文稿备注
Mutex3可以确保读者退出临界区时最多只有一个读者执行了wait(r),从而确保这个读者执行后写者可以顺利进入临界区。
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READER
While(ture){ 

P( no_writers ); 
P( counter_mutex ); 

prev := nreaders; 
nreaders := nreaders + 1; 

V( counter_mutex );
if prev = 0 then P( no_readers ); 

V( no_writers ); 
... read ... 
P( counter_mutex );

nreaders := nreaders - 1; 
current := nreaders; 

V( counter_mutex );
if current = 0 then V( no_readers );

}

WRITER
While(ture){ 

P( no_writers ); 
P( no_readers ); 
V( no_writers ); 
... write ... 
V( no_readers );}

 semaphores: no_writers, no_readers, counter_mutex ( initial value is 1 )
 shared variables: nreaders ( initial value is 0 ) 
 local variables: prev, current
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Dining-Philosophers Problem

ph5

Room

ph1
ph4

ph3 ph2

f1f5

f4
f3

f2
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Dining-Philosophers Problem (Cont.)
 Shared data 
 Bowl (data set)
 Semaphore chopstick [5] initialized to 1

 The structure of Philosopher i:

While (true)  { 
wait ( chopstick[i] );
wait ( chopstick[ (i + 1) % 5] );

//  eat

signal ( chopstick[i] );
signal (chopstick[ (i + 1) % 5] );

//  think
}
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Problem
 When everyone got one chopstick, what will 

happen.
 Solution
 4 persons, at most, are permitted sitting in chair.
 Two chopsticks are available, pick them up
 Asymmetric method 

Room

ph1
ph4

ph
3

ph2

f1f
5

f4
f3

f2
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Sleeping-Barber problem
 A barbershop consists of a waiting room with n chairs and 

a barber room with one barber chair. If there is no 
customer to be served, the barber goes to sleep. If a 
customer enters the barbershop and all chairs are 
occupied, then the customer leaves the shop. If the barber 
is busy but chairs are available, then the customer sits in 
one of the chairs. If the barber is asleep, the customer 
wakes up the barber.
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Sleeping-Barber problem

procedure barber
{

while (true)
{

wait(customers); //等待顾客,无则睡眠

wait(mutex);       // 进程互斥

waiting--;            //等候数减一

signal(barber);    //理发师叫一个顾客

signal(mutex);    // 开放临界区

cut_hair();          // 正在理发

}
}

procedure customer
{

wait(mutex);               // 进程互斥

if (waiting < CHAIRS)       //有没有空椅子

{
waiting++;                     // 等候顾客数加1

signal(customers);         // 有可能唤醒理发师

signal(mutex);               // 开放临界区

wait(barber);                 //理发师忙,顾客等待

get_haircut();                // 一个顾客坐下理发

}
else

signal(mutex);             // 人满了，走吧！

} 

int waiting = 0; // 等候理发的顾客数
int CHAIRS = n;                  // 为顾客准备的椅子数
semaphore customers, barber, mutex;
customers = 0; barber = 0; mutex = 1; 
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Apple and orange problem
 Father, mother, son, and daughter
 One plate on a table
 Father puts one apple on the plate every time
 Mother puts one orange every time
 Son eats apples
 Daughter eats oranges 

 Use semaphores to implement this problem
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Problems with Semaphores
 Correct use of semaphore operations？

 signal (mutex)  ….  wait (mutex)

 wait (mutex)  … wait (mutex)

 Omitting  of wait (mutex) or signal (mutex) (or both)
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Problems to use semaphore
 It is very difficult to guarantee that there is no 

error.
 It is not very easy to read the code.
 It is difficult to modify or maintain the 

semaphores  
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Monitors
 A high-level abstraction that provides a convenient and 

effective mechanism for process synchronization
 The idea is first introduced by Dijkstra in 1971. He 

suggested to combine all operations on critical resources 
into a single program module– secretary process.

 In 1973, the monitor concept was proposed by Brinch 
Hansen.

 In 1974, Hoare also described the monitor concept. 
 The monitor concept is a fusion of ideas from abstract data 

types and critical regions. A monitor provides the rest of 
the world with a limited set of mechanisms for accessing 
some protected data. The visible part of a monitor consists 
of the headers of various procedures, each of which can 
be called by any other process. 

 The monitor is implemented in such a way as to allow only 
one process to be executing any of its procedures at any 
time.
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Monitors
 Only one process may be active within the monitor at a 

time

monitor monitor-name
{

// shared variable declarations
procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code ( ….) { … }
…

}
}
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Schematic view of a Monitor
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Condition Variables
 To allow a process to wait within the monitor, a 

condition variable must be declared, as
 condition x, y;
 Two operations on a condition variable:
 x.wait () – a process that invokes the operation is 

suspended.
 x.signal () – resumes one of processes (if any) that

invoked x.wait ()
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Monitor with Condition Variables
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Solution to Dining Philosophers
monitor DP

{ 
enum { THINKING; HUNGRY, EATING} state [5] ;
condition self [5];

void pickup (int i) { 
state[i] = HUNGRY;
test(i);
if (state[i] != EATING) self [i].wait;

}

void putdown (int i) { 
state[i] = THINKING;

// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}
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Solution to Dining Philosophers (cont)
void test (int i) { 

if ( (state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ;
self[i].signal () ;

}
}

initialization_code() { 
for (int i = 0; i < 5; i++)

state[i] = THINKING;
}

}
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Solution to Dining Philosophers (cont)
 Each philosopher I invokes the operations 

pickup()
and putdown() in the following sequence:

dp.pickup (i)

EAT

dp.putdown (i)
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Options after x.signal( )
 Suppose P invokes x.signal(), and Q is a 

suspended process with condition x
 Signal and wait -- P either waits until Q leaves the 

monitor or waits for another condition
 Signal and continue – Q either waits until P leaves 

the monitor or waits for another condition

 The first one is supported by Hoare.
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Monitor Implementation Using Semaphores
 Semaphore mutex (initialized to 1)
 use it to call the procedure exclusively
 So, before a process calls a procedure in a monitor, 

it should first execute wait(mutex). 
 After it exits from the monitor, it should execute 

signal(mutex).
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Monitor Implementation Using Semaphores
 Semaphore next (initialized to 0)
 Once a process calls x.signal(), it uses wait(next) to 

suspend itself. 
 Int next-count (initialized to 0)
 Use it to record how many processes are waiting 

on next.
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Monitor Implementation Using Semaphores
 Variables 

semaphore mutex;  // (initially  = 1)
semaphore next;     // (initially  = 0)
int next-count = 0;

 Each procedure F will be replaced by

wait(mutex);
…

body of F;

…
if (next-count > 0)

signal(next)
else 

signal(mutex);

 Mutual exclusion within a monitor is ensured.
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Monitor Implementation Using Semaphores
 For each condition variable x, we  have:

semaphore x-sem; // (initially  = 0)
int x-count = 0;

 Semaphore x-sem (initialized to 0)
 Use it to suspend a process, when the resources this 

process applies are not enough. 

 When a type of resource is released, we should know 
whether there are other processes waiting on this 
resource. So a counter should be used to record the 
number of processes waiting on this resource.

 Int x-count (initialized to 0)
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Monitor Implementation
 The operation x.wait can be implemented as:

x-count++;
if (next-count > 0)

signal(next);
else

signal(mutex);
wait(x-sem);
x-count--;
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Monitor Implementation
 The operation x.signal can be implemented as:

if (x-count > 0) {
next-count++;
signal(x-sem);
wait(next);
next-count--;

}
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Synchronization Examples
 Solaris
 Windows XP
 Linux
 Pthreads
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Solaris Synchronization
 Implements a variety of locks to support 

multitasking, multithreading (including real-time 
threads), and multiprocessing

 Uses adaptive mutexes for efficiency when 
protecting data from short code segments

 Uses condition variables and readers-writers 
locks when longer sections of code need 
access to data

 Uses turnstiles to order the list of threads 
waiting to acquire either an adaptive mutex or 
reader-writer lock
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Windows XP Synchronization
 Uses interrupt masks to protect access to 

global resources on uniprocessor systems
 Uses spinlocks on multiprocessor systems
 Also provides dispatcher objects which may act 

as either mutexes and semaphores
 Dispatcher objects may also provide events
 An event acts much like a condition variable
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Linux Synchronization
 Linux:
 disables interrupts to implement short critical 

sections

 Linux provides:
 semaphores
 spin locks
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Pthreads Synchronization
Pthreads API is OS-independent
 It provides:
 mutex locks
 condition variables

Non-portable extensions include:
 read-write locks
 spin locks
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Atomic Transactions
 System Model
 Log-based Recovery
 Checkpoints
 Concurrent Atomic Transactions
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System Model
 Assures that operations happen as a single logical 

unit of work, in its entirety, or not at all
 Related to field of database systems
 Challenge is assuring atomicity  despite computer 

system failures
 Transaction - collection of instructions or operations 

that performs single logical function
 Here we are concerned with changes to stable storage –

disk
 Transaction is series of read and write operations
 Terminated by commit (transaction successful) or abort

(transaction failed) operation
 Aborted transaction must be rolled back to undo any 

changes it performed
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Types of Storage Media
 Volatile storage – information stored here does not 

survive system crashes
 Example:  main memory, cache

 Nonvolatile storage – Information usually survives 
crashes
 Example:  disk and tape

 Stable storage – Information never lost
 Not actually possible, so approximated via replication or 

RAID to devices with independent failure modes

Goal is to assure transaction atomicity where failures cause loss of 
information on volatile storage
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Log-Based Recovery
 Record to stable storage information about all 

modifications by a transaction
 Most common is write-ahead logging
 Log on stable storage, each log record describes single 

transaction write operation, including
 Transaction name
 Data item name
 Old value
 New value

 <Ti starts> written to log when transaction Ti starts
 <Ti commits> written when Ti commits

 Log entry must reach stable storage before 
operation on data occurs
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Log-Based Recovery Algorithm
 Using the log, system can handle any volatile memory 

errors
 Undo(Ti) restores value of all data updated by Ti

 Redo(Ti) sets values of all data in transaction Ti to new 
values

 Undo(Ti) and redo(Ti) must be idempotent
 Multiple executions must have the same result as one 

execution

 If system fails, restore state of all updated data via log
 If log contains <Ti starts> without <Ti commits>, undo(Ti)
 If log contains <Ti starts> and <Ti commits>, redo(Ti)
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Checkpoints
 Log could become long, and recovery could take long
 Checkpoints shorten log and recovery time.
 Checkpoint scheme:

1. Output all log records currently in volatile storage to stable 
storage

2. Output all modified data from volatile to stable storage
3. Output a log record <checkpoint> to the log on stable 

storage



Checkpoints
 Now recovery only includes Ti, such that Ti

started executing before the most recent 
checkpoint, and all transactions after Ti. All 
other transactions already on stable storage

 The recovery operations are as follows:
 For all transactions Tk that the record <Tk, 

commits> appears in the log, execute redo(Tk)
 For all transactions Tk that have no <Tk commits> 

record in the log, execute undo(Tk)
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Concurrent Transactions
 Must be equivalent to serial execution –

serializability
 Could perform all transactions in critical section
 Inefficient, too restrictive

 Concurrency-control algorithms provide 
serializability
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Serializability
 Consider two data items A and B
 Consider Transactions T0 and T1

 Execute T0, T1 atomically
 Execution sequence called schedule
 Atomically executed transaction order called 

serial schedule
 For N transactions, there are N! valid serial 

schedules
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Schedule 1: T0 then T1
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Nonserial Schedule
 Nonserial schedule allows overlapped execute
 Resulting execution not necessarily incorrect

 Consider schedule S, operations Oi, Oj
 Conflict if access same data item, with at least one 

write
 If Oi, Oj consecutive operations of different 

transactions Oi and Oj don’t conflict
 Then S’ with swapped order Oj Oi equivalent to S

 If S can become S’ via swapping nonconflicting 
operations
 S is conflict serializable
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Schedule 2: Concurrent Serializable Schedule
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Serializable Schedule

T1 T2 T1 T2 T1 T2

Slock B

Y = B(=2)

Unlock B

Xlock A

A = Y + 1

写回A(=3)

Unlock A

X = A(= 3)

Unlock A

写回B(=4)

Unlock B

Slock A

Xlock B

B = X + 1

a   串行调度 c  不可串行化的调度
(结果与a,b不同，错误调度)

Slock B

Y = B(=2)

Unlock B

Xlock A

A = Y + 1

写回A(=3)

Unlock A

X = A(=2)

Unlock A

写回B(=3)

Unlock B

Slock A

Xlock B

B = X + 1

Slock B

Y = B(=2)

Unlock B

Xlock A

A = Y + 1

写回A(=3)

Unlock A

Slock A

X = A(=3)

Unlock A

写回B(=4)

Unlock B

Xlock B

B = X + 1

等待

等待

等待

T1 T2

Slock B

Y = B(=3)

Unlock B

Xlock A

A = Y + 1

写回A(=4)

Unlock A

X = A(=2)

Unlock A

写回B(=3)

Unlock B

Slock A

Xlock B

B = X + 1

d  可串行化的调度
(结果与a相同，正确调度)

b   串行调度

T1: 读B; A=B+1; 写回A;     T2: 读A; B=A+1; 写回B;    A,B初值均为2
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Locking Protocol
 Ensure serializability by associating lock with each 

data item
 Follow locking protocol for access control

 Locks
 Shared – Ti has shared-mode lock (S) on item Q, Ti can read 

Q but not write Q
 Exclusive – Ti has exclusive-mode lock (X) on Q, Ti can read 

and write Q

 Require every transaction on item Q acquire 
appropriate lock

 If lock already held, new request may have to wait
 Similar to readers-writers algorithm
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Two-phase Locking Protocol
 Generally ensures conflict serializability
 Each transaction issues lock and unlock 

requests in two phases
 Growing – obtaining locks
 Shrinking – releasing locks

 Problem
 Does not prevent deadlock
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Timestamp-based Protocols
 Select order among transactions in advance –

timestamp-ordering
 Transaction Ti associated with timestamp TS(Ti) 

before Ti starts
 TS(Ti) < TS(Tj) if Ti entered system before Tj
 TS can be generated from system clock or as 

logical counter incremented at each entry of 
transaction

 Timestamps determine serializability order
 If TS(Ti) < TS(Tj), system must ensure produced 

schedule equivalent to serial schedule where Ti
appears before Tj
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Timestamp-based Protocol Implementation
 Data item Q gets two timestamps
 W-timestamp(Q) – largest timestamp of any transaction that 

executed write(Q) successfully
 R-timestamp(Q) – largest timestamp of successful read(Q)
 Updated whenever read(Q) or write(Q) executed

 Timestamp-ordering protocol assures any conflicting 
read and write executed in timestamp order

 Suppose Ti executes read(Q)
 If TS(Ti) < W-timestamp(Q), Ti needs to read value of Q that 

was already overwritten
 read operation rejected and Ti rolled back

 If TS(Ti) ≥ W-timestamp(Q)
 read executed, R-timestamp(Q) set to max(R-timestamp(Q), 

TS(Ti))
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Timestamp-ordering Protocol
 Suppose Ti executes write(Q)
 If TS(Ti) < R-timestamp(Q), value Q produced by Ti was 

needed previously and Ti assumed it would never be 
produced
 Write operation rejected, Ti rolled back

 If TS(Ti) < W-timestamp(Q), Ti attempting to write obsolete 
value of Q
 Write operation rejected and Ti rolled back

 Otherwise, write executed

 Any rolled back transaction Ti is assigned new 
timestamp and restarted

 Algorithm ensures conflict serializability and freedom 
from deadlock
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Schedule Possible Under Timestamp Protocol



Example(1)
关于临界区问题（critical section problem）的一个算法（假设只有进程P0和
P1可能会进入该临界区）如下（i为0或1），该算法 。
A、不能保证进程互斥进入临界区，且会出现“饥饿”（Starvation)
B、不能保证进程互斥进入临界区，但不会出现“饥饿”
C、保证进程互斥进入临界区，但会出现“饥饿”
D、保证进程互斥进入临界区，不会出现“饥饿”
repeat
retry：if  (turn!= -1 )  turn := i；

if  (turn!=i )  go  to  retry；
turn := -1；
Critical  Section（临界区）
turn := 0；
remainder  Section（其它区域）

until  false；
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Example(2)
下述关于双进程临界区问题的算法（对编号为id的进程）是否正确：

do{

blocked[id]=true;

while(turn !=id)

{

while(blocked[1-id]);

turn=id;

}

<编号为id的进程的临界区 CS>

blocked[id]=false;

编号为id的进程的非临界区

} while (true)：

其中，布尔型数组blocked[2]初始值为为{false,false}，整型turn初始值为0
，id代表进程编号（0或1）。请说明它的正确性，或指出错误所在。
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若此时进程切换，且让对方再次进入临
界区，互斥条件无法满足



Example(3)
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wait(semaphore s)
{

waitB(mutex);
s = s-1;
if (s<0)
{

signalB(mutex);
waitB(delay);

}
else

signalB(mutex);
}

signal(semaphore s)
{

waitB(mutex);
s= s+1;
if(s<=0)

signalB(delay);
else
signalB(mutex);

}

1、s = 0 时，p1 calls wait() and p2 calls wait()并都
在执行waitB(delay)前交出CPU
2、p3 and p4 call signal()。此时本应允许p1 and p2 
wakeup，但因delay升至1后无法再升，导致p1 or p2 
中一个仍在wait(delay)



Example(4)
 某银行提供1个服务窗口和10个供顾客等待的座位。顾客到达银行时，若有空座位，则到

取号机上领取一个号，等待叫号。取号机每次仅允许一位顾客使用。当营业员空闲时，通
过叫号选取一位顾客，并为其服务。顾客和营业员的活动过程描述如下：

 请添加必要的信号量和P、V(或wait()、signal())操作，实现上述过程中的互斥与同步。
要求写出完整的过程，说明信号量的含义并赋初值。
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process 顾客i
{

从取号机获得一个号码;
等待叫号;
获得服务;

}

process 营业员
{

while (TRUE)
{

叫号;
为顾客服务;

}
}



 Semaphore seats =10;//表示空余座位数量的资源信号量，初值为10

 Semaphore mutex = 1; //管理取号机的互斥信号量，初值为1，表示取号机空闲

 Semaphore custom = 0; //表示顾客数量的资源信号量，初值为0
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Process 顾客
{

P(seats); //找个空座位
P(mutex); //在看看取号机是否空闲
从取号机取号;
V(mutex) //放开那个取号机
V(custom); //取到号，告诉营业员有顾客
等待叫号;
V(seats) //被叫号，离开座位
接受服务;

}

Process 营业员
{

While(true)
{

P(custom); //看看有没有等待的顾客
叫号;
为顾客服务;

}
}
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Assignments
 6.3, 6.7, 6.9, 6.11, 6.16
 Apple, orange problem



End of Chapter 6

Any Question?
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