
Chapter 6

Process Synchronization

SHANDONG UNIVERSITY 2

Contents
 Background
 The Critical-Section Problem
 Peterson’s Solution
 Synchronization Hardware
 Semaphores
 Classic Problems of Synchronization
 Monitors
 Synchronization Examples
 Atomic Transactions

SHANDONG UNIVERSITY 3

Objectives
 To introduce the critical section problem,

whose solutions can be used to ensure the
consistency of shared data

 To present both software and hardware
solutions of the critical-section problem

 To introduce the concept of atomic transaction
and describe mechanisms to ensure atomicity

SHANDONG UNIVERSITY 4

Background
 Concurrent access to shared data may result in

data inconsistency
 Maintaining data consistency requires

mechanisms to ensure the orderly execution of
cooperating processes

SHANDONG UNIVERSITY 5

Producer and Consumer Problem

0 1 …… k-1

箱子，容量k

B:Array[0..k-1]Of item

生产者 消费者

生产物品
放入B中

B中取物品
消费之

SHANDONG UNIVERSITY 6

Shared-Memory Solution
 Shared data

#define BUFFER_SIZE 10
Typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

缓冲区下一个空位

缓冲区第一个非空位

SHANDONG UNIVERSITY 7

Producer Process
item nextProduced;

while (1) {
while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

}

SHANDONG UNIVERSITY 8

Consumer Process
item nextConsumed;

while (1) {
while (in == out)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

}
 Problem: Solution is correct, but can only use

BUFFER_SIZE-1 elements

SHANDONG UNIVERSITY 9

One solution to this problem
 Suppose that we wanted to provide a solution

to the consumer-producer problem that fills all
the buffers. We can do so by having an integer
counter that keeps track of the number of full
buffers. Initially, count is set to 0. It is
incremented by the producer after it produces
a new buffer and is decremented by the
consumer after it consumes a buffer.

SHANDONG UNIVERSITY 10

Producer
while (true) {

/* produce an item and put in nextProduced */
while (counter == BUFFER_SIZE)

; // do nothing
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

SHANDONG UNIVERSITY 11

Consumer
while (true) {

while (counter == 0)
; // do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in nextConsumed
}

SHANDONG UNIVERSITY 12

Problem
 counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

 counter-- could be implemented as
register2 = counter
register2 = register2 - 1
counter = register2

 Consider this execution interleaving with “counter = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

SHANDONG UNIVERSITY 13

Race Condition
 A situation that when several processes

access and manipulate the same data
concurrently and the outcome of the execution
depends on the particular order in which the
access takes place, is called a race condition

 So we must guarantee that only one process
can operate the variable.

SHANDONG UNIVERSITY 14

Background
 Concurrent access to shared data may result in

data inconsistency
 Maintaining data consistency requires

mechanisms to ensure the orderly execution of
cooperating processes

SHANDONG UNIVERSITY 15

Critical-Section
 The segment of code in which the process may

be changing common variables, updating a
table, writing a file, and so on, is called critical
section

Do{

critical section

remainder section
}while(1)

entry section

exit section

SHANDONG UNIVERSITY 16

Critical-Section Problem
 The Critical-Section Problem is to design a

protocol that the processes can use to
cooperate.

SHANDONG UNIVERSITY 17

Solution to Critical-Section Problem
1. Mutual Exclusion - If process Pi is executing in its critical

section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section
and there exist some processes that wish to enter their
critical section, then only those processes that are not
executing in their remainder sections can participate in the
decision on which will enter its critical section next, and this
selection cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its
critical section and before that request is granted
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the N processes

SHANDONG UNIVERSITY 18

Principles to use critical section
 Only one process in critical section
 If there are many processes that want to enter

the critical section, one process should be
allowed within bounded time

 Process can stay in CS within bounded time

SHANDONG UNIVERSITY 19

Algorithm 1
One shared integer variable: turn (0 or 1)
do {

while (turn != i) ; //entry section
Critical section

turn = j; //exit section
Remainder section

} while (1);

Is it correct?

SHANDONG UNIVERSITY 20

Algorithm 2
do {

flag [i] = true;
while (flag [j]) ; //entry section

critical section
flag [i] = false; //exit section
remainder section

} while (1);

SHANDONG UNIVERSITY 21

Peterson’s Solution
 Two process solution
 Assume that the LOAD and STORE instructions are

atomic; that is, cannot be interrupted.
 The two processes share two variables:
 int turn;
 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the
critical section.

 The flag array is used to indicate if a process is ready
to enter the critical section. flag[i] = true implies that
process Pi is ready!

SHANDONG UNIVERSITY 22

Algorithm for Process Pi

 Process Pi
do {

flag [i] = true;
turn = j;
while (flag [j] && turn = = j) ; //entry
critical section
flag [i] = false; //exit
remainder section

} while (1);

 Process Pj
do {

flag [j] = true;
turn = i;
while (flag [i] && turn = = i) ; //entry
critical section
flag [j] = false; //exit section
remainder section

} while (1);

SHANDONG UNIVERSITY 23

Solution to multiprocess problem
 Idea
 Every client will receive a number(1, 2, …, n), the

client with minimal number will be served first
 Problem
 Can not guarantee that different clients get different

numbers
 Solution
 Except the number, process’s name is used

SHANDONG UNIVERSITY 24

Solution to multiprocess problem
 implementation
 boolean choosing[n]; //false
 int number[n]; //0
 definition：
max(a0, …, an-1)is the number k, and k≥ai, for

all i = 0, …, n-1
 (a,b)<(c,d) iff (a<c)or(a=c and b<d)

SHANDONG UNIVERSITY 25

Solution to multiprocess problem
Program for pi
do {

choosing [i] = true;
number [i] = max(number[0], number[1], …, number[n-1]) + 1;
choosing [i] = false;
for (j = 0; j < n; j ++) {

while (choosing [j]) ;
while ((number [j] != 0) && (number [j], j) < (number [i], i)) ;

}
critical section
number[i] = 0;
remainder section

} while (1);

SHANDONG UNIVERSITY 26

Eisenberg/Mcguire
 Data structure
 enum flag[n] (idle, want_in, in_cs);
 int turn; //in the range of (0,n-1)
 Initialize all elements of flag to be idle, turn takes

the value between 0 and n-1. In addition, every
process has a local variable, as follows:

 int j; //in the range of (0,n-1)

SHANDONG UNIVERSITY 27

Eisenberg/Mcguire
do{

while(true){
flag[i] = want_in;
j = turn;
while (j != i){

if (flag[j] != idle) j = turn;
else j = (j+1)% n;

}
flag[i] = in_cs; j = 0;
while ((j<n) && (j == i || flag[j] != in_cs)) j ++; //the # of processes not in_cs+myself
if((j>=n) && (turn ==i || flag[turn]==idle)) //I am the only one whose state is in_cs

break;
}
turn =i;
Critical section
j = (turn+1)% n;
while (flag[j] == idle)

j = (j+1)% n;
turn = j; flag[i] = idle;
//Remainder section

}while(true);

SHANDONG UNIVERSITY 28

Synchronization Hardware
 Many systems provide hardware support for critical

section code
 Uniprocessor environment – could disable interrupts
 Currently running code would execute without preemption
 Generally too inefficient on multiprocessor systems
 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware
instructions
 Atomic = non-interruptable

 TestAndSet: test memory word and set value
 Swap: swap contents of two memory words

SHANDONG UNIVERSITY 29

TestAndSet Instruction
 Definition:

boolean TestAndSet (boolean *target)
{

boolean rv = *target;
*target = TRUE;
return rv;

}

SHANDONG UNIVERSITY 30

Solution using TestAndSet
 Shared boolean variable lock., initialized to false.
 Solution:

while (true) {
while (TestAndSet (&lock))

; /* do nothing
critical section
lock = FALSE;
//remainder section

}

SHANDONG UNIVERSITY 31

Solution using TestAndSet
do {

waiting[i] = true;
key = true;
while (waiting[i] && key)

key = TestAndSet(lock);
waiting[i] = false;
critical section
j = (i + 1) %n;
while ((j != i) && !waiting[j])

j = (j + 1) %n;
if (j == i)

lock = false;
else

waiting[j] = false;
remainder section

} while (1);

do {
waiting[j] = true;
key = true;
while (waiting[j] && key)

key = TestAndSet(lock);
waiting[j] = false;
critical section
i = (j + 1) %n;
while ((i != j) && !waiting[k])

i = (i + 1) %n;
if (i== j)

lock = false;
else

waiting[i] = false;
remainder section

} while (1);

It must be atomic!

SHANDONG UNIVERSITY 32

Swap Instruction
 Definition:

void Swap (boolean *a, boolean *b)
{

boolean temp = *a;
*a = *b;
*b = temp:

}

SHANDONG UNIVERSITY 33

Solution using Swap
 Shared Boolean variable lock initialized to FALSE; Each

process has a local Boolean variable key.
 Solution:

while (true) {
key = TRUE;
while (key == TRUE)

Swap (&lock, &key);
critical section
lock = FALSE;
// remainder section

}
Give a correct solution using swap()!

SHANDONG UNIVERSITY 34

Solution using Swap
do {

waiting[i] = true;
key = true;
while (waiting[i] && key)

swap(lock, key)
waiting[i] = false;
critical section
j = (i + 1) %n;
while ((j != i) && !waiting[j])

j = (j + 1) %n;
if (j == i)

lock = false;
else

waiting[j] = false;
remainder section

} while (1);

SHANDONG UNIVERSITY 35

Semaphore
 The hardware-based solutions to the critical-section problem are complicated

for application programmers to use.
 Synchronization tool that does not require busy waiting
 Semaphore S – integer variable
 Two standard operations modify S: wait() and signal()

 Originally called P() and V()
 Passeren, Vrijgeven

 Less complicated
 Can only be accessed via two indivisible (atomic) operations
 wait (S) {

while S <= 0
; // no-op

S--;
}

 signal (S) {
S++;

}

SHANDONG UNIVERSITY 36

Semaphore as General Synchronization Tool
 Counting semaphore – integer value can range

over an unrestricted domain
 Binary semaphore – integer value can range

only between 0 and 1; can be simpler to
implement
 Also known as mutex locks

 Can implement a counting semaphore S as a
binary semaphore

SHANDONG UNIVERSITY 37

How to provide mutual exclusion and synchronization

 Provides mutual exclusion
 Semaphore S; // initialized to 1
 wait (S);

Critical Section
signal (S);

 Provides synchronization
 P1:

S1;
signal(synch);

 P2:
wait(synch);
S2;

SHANDONG UNIVERSITY 38

Semaphore Implementation
 The main disadvantage of the semaphore

definition given above is that it requires busy
waiting.

 This type of semaphore is also called a
spinlock because the process “spins” while
waiting for the lock.

 This is a waste of CPU time.

SHANDONG UNIVERSITY 39

Semaphore Implementation with no Busy waiting
 With each semaphore has an integer value and a list

of processes list. When a process must wait on a
semaphore, it is added to the list.
 value (of type integer)
 pointer to next record in the list
Typedef struct{

int value;
struct process *list;

}semphore
 Two operations:
 block – place the process invoking the operation on the

appropriate waiting queue.
 wakeup – remove one of processes in the waiting queue and

place it in the ready queue.

SHANDONG UNIVERSITY 40

Semaphore Implementation with no Busy waiting (Cont.)
 Implementation of wait:

wait (S){
s->value--;
if (s->value < 0) {

add this process to waiting queue
block();

}
}

 Implementation of signal:

Signal (S){
s->value++;
if (s->value <= 0) {

remove a process P from the waiting queue
wakeup(P); }

}

SHANDONG UNIVERSITY 41

Deadlock and Starvation
 Deadlock – two or more processes are waiting

indefinitely for an event that can be caused by only
one of the waiting processes

 Let S and Q be two semaphores initialized to 1
P0 P1

wait (S); wait (Q);
wait (Q); wait (S);

. .

. .

. .
signal (S); signal (Q);
signal (Q); signal (S);

 Starvation – indefinite blocking. A process may never
be removed from the semaphore queue in which it is
suspended.

SHANDONG UNIVERSITY 42

Binary Semaphore
 the semaphore value is restricted to 0 and 1.
 Wait() succeeds only when the semaphore value

is 1
 Signal() does not change the semaphore value

when it is 1
 How to implement a counting semaphore S as a

binary semaphore
 binary-semaphore S1, S2;
 int C;
 Initialize S1 = 1, S2 = 0, C is equal to S

SHANDONG UNIVERSITY 43

Binary Semaphore

 Wait
 wait(S1);
 C--;
 if (C < 0) {
 signal(S1);
 wait(S2);

 }
 signal(S1);

 Signal
 wait(S1);
 C++;
 if (C <= 0)
 signal(S2);

 else
 signal(S1);

SHANDONG UNIVERSITY 44

Wait() and signal() operation
 Usually, they are used with pair
 For mutual exclusion, they are in the same

process
 For synchronization, they are in different

processes
 If there are wait() operations, the sequence is

very important. However, it is not important for
two signal() operations.

 Wait() for synchronization is before that for
mutual exclusion

SHANDONG UNIVERSITY 45

Classical Problems of Synchronization
 Bounded-Buffer Problem
 Readers and Writers Problem
 Dining-Philosophers Problem

SHANDONG UNIVERSITY 46

Bounded-Buffer Problem
 N buffers, each can hold one item
 Semaphore mutex initialized to the value 1
 Semaphore full initialized to the value 0
 Semaphore empty initialized to the value N.

0 1 …… n-1

producer consumer

Put products
into B

Get products
from B

SHANDONG UNIVERSITY 47

Bounded Buffer Problem (Cont.)
Producer process

while (true) {

// produce an item

wait (empty);
wait (mutex);

// add the item to the buffer

signal (mutex);
signal (full);

}

Consumer process

while (true) {
wait (full);
wait (mutex);

// remove an item from buffer

signal (mutex);
signal (empty);

// consume the removed item

}

SHANDONG UNIVERSITY 48

Readers-Writers Problem
 A data set is shared among a number of

concurrent processes
 Readers – only read the data set; they do not

perform any updates
 Writers – can both read and write.

 Problem – allow multiple readers to read at the
same time. Only one single writer can access
the shared data at the same time.

SHANDONG UNIVERSITY 49

Two classes
 The first class
 Writer can access only when this is no reader

waiting for access
 The second class
 The writer has a higher priority

 Shared Data
 Data set
 Semaphore mutex initialized to 1.
 Semaphore wrt initialized to 1.
 Integer readcount initialized to 0.

SHANDONG UNIVERSITY 50

Readers-Writers Problem (Cont.)
 The structure of a writer process

while (true) {
wait (wrt) ;

// writing is performed

signal (wrt) ;
}

SHANDONG UNIVERSITY 51

Readers-Writers Problem (Cont.)
 The structure of a reader process

while (true) {
wait (mutex) ;
readcount ++ ;
if (readcount == 1) wait (wrt) ;
signal (mutex)

// reading is performed

wait (mutex) ;
readcount - - ;
if (readcount == 0) signal (wrt) ;
signal (mutex) ;

}

SHANDONG UNIVERSITY 52

Problems
 If there are many readers, the writer has no

chance to access the data.
 Solution
 Once there is a writer to wait for access, the

following readers will have to wait. When all
readers finish their operation, then the writer will
begin to access the data.

How to implement this solution?

SHANDONG UNIVERSITY 53

Readers-Writers Problem (Cont.)

READER
While(true){

wait(mutex 3); //ensure at most one reader will go
//before a pending write

wait(r);
wait(mutex 1);

readcount := readcount + 1;
if readcount = 1 then wait(w);

signal(mutex 1);
signal(r);

signal(mutex 3);
reading is done
wait(mutex 1);

readcount := readcount - 1;
if readcount = 0 then signal(w);

signal(mutex 1);
}

WRITER
While(ture){

wait(mutex 2);
writecount := writecount + 1;
if writecount = 1 then wait(r);

signal(mutex 2);
wait(w);

writing is performed
signal(w);
wait(mutex 2);
writecount := writecount - 1;
if writecount = 0 then signal(r);
signal(mutex 2);

}

 int readcount, writecount; (initial value = 0)
 semaphore mutex 1, mutex 2, mutex 3, w, r ; (initial value = 1)

演示者
演示文稿备注
Mutex3可以确保读者退出临界区时最多只有一个读者执行了wait(r),从而确保这个读者执行后写者可以顺利进入临界区。

Readers-Writers Problem (Cont.)

SHANDONG UNIVERSITY 54SHANDONG UNIVERSITY 54

READER
While(ture){

P(no_writers);
P(counter_mutex);

prev := nreaders;
nreaders := nreaders + 1;

V(counter_mutex);
if prev = 0 then P(no_readers);

V(no_writers);
... read ...
P(counter_mutex);

nreaders := nreaders - 1;
current := nreaders;

V(counter_mutex);
if current = 0 then V(no_readers);

}

WRITER
While(ture){

P(no_writers);
P(no_readers);
V(no_writers);
... write ...
V(no_readers);}

 semaphores: no_writers, no_readers, counter_mutex (initial value is 1)
 shared variables: nreaders (initial value is 0)
 local variables: prev, current

SHANDONG UNIVERSITY 55

Dining-Philosophers Problem

ph5

Room

ph1
ph4

ph3 ph2

f1f5

f4
f3

f2

SHANDONG UNIVERSITY 56

Dining-Philosophers Problem (Cont.)
 Shared data
 Bowl (data set)
 Semaphore chopstick [5] initialized to 1

 The structure of Philosopher i:

While (true) {
wait (chopstick[i]);
wait (chopstick[(i + 1) % 5]);

// eat

signal (chopstick[i]);
signal (chopstick[(i + 1) % 5]);

// think
}

SHANDONG UNIVERSITY 57

Problem
 When everyone got one chopstick, what will

happen.
 Solution
 4 persons, at most, are permitted sitting in chair.
 Two chopsticks are available, pick them up
 Asymmetric method

Room

ph1
ph4

ph
3

ph2

f1f
5

f4
f3

f2

SHANDONG UNIVERSITY 58

Sleeping-Barber problem
 A barbershop consists of a waiting room with n chairs and

a barber room with one barber chair. If there is no
customer to be served, the barber goes to sleep. If a
customer enters the barbershop and all chairs are
occupied, then the customer leaves the shop. If the barber
is busy but chairs are available, then the customer sits in
one of the chairs. If the barber is asleep, the customer
wakes up the barber.

SHANDONG UNIVERSITY 59

Sleeping-Barber problem

procedure barber
{

while (true)
{

wait(customers); //等待顾客,无则睡眠

wait(mutex); // 进程互斥

waiting--; //等候数减一

signal(barber); //理发师叫一个顾客

signal(mutex); // 开放临界区

cut_hair(); // 正在理发

}
}

procedure customer
{

wait(mutex); // 进程互斥

if (waiting < CHAIRS) //有没有空椅子

{
waiting++; // 等候顾客数加1

signal(customers); // 有可能唤醒理发师

signal(mutex); // 开放临界区

wait(barber); //理发师忙,顾客等待

get_haircut(); // 一个顾客坐下理发

}
else

signal(mutex); // 人满了，走吧！

}

int waiting = 0; // 等候理发的顾客数
int CHAIRS = n; // 为顾客准备的椅子数
semaphore customers, barber, mutex;
customers = 0; barber = 0; mutex = 1;

SHANDONG UNIVERSITY 60

Apple and orange problem
 Father, mother, son, and daughter
 One plate on a table
 Father puts one apple on the plate every time
 Mother puts one orange every time
 Son eats apples
 Daughter eats oranges

 Use semaphores to implement this problem

SHANDONG UNIVERSITY 61

Problems with Semaphores
 Correct use of semaphore operations？

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Omitting of wait (mutex) or signal (mutex) (or both)

SHANDONG UNIVERSITY 62

Problems to use semaphore
 It is very difficult to guarantee that there is no

error.
 It is not very easy to read the code.
 It is difficult to modify or maintain the

semaphores

SHANDONG UNIVERSITY 63

Monitors
 A high-level abstraction that provides a convenient and

effective mechanism for process synchronization
 The idea is first introduced by Dijkstra in 1971. He

suggested to combine all operations on critical resources
into a single program module– secretary process.

 In 1973, the monitor concept was proposed by Brinch
Hansen.

 In 1974, Hoare also described the monitor concept.
 The monitor concept is a fusion of ideas from abstract data

types and critical regions. A monitor provides the rest of
the world with a limited set of mechanisms for accessing
some protected data. The visible part of a monitor consists
of the headers of various procedures, each of which can
be called by any other process.

 The monitor is implemented in such a way as to allow only
one process to be executing any of its procedures at any
time.

SHANDONG UNIVERSITY 64

Monitors
 Only one process may be active within the monitor at a

time

monitor monitor-name
{

// shared variable declarations
procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code (….) { … }
…

}
}

SHANDONG UNIVERSITY 65

Schematic view of a Monitor

SHANDONG UNIVERSITY 66

Condition Variables
 To allow a process to wait within the monitor, a

condition variable must be declared, as
 condition x, y;
 Two operations on a condition variable:
 x.wait () – a process that invokes the operation is

suspended.
 x.signal () – resumes one of processes (if any) that

invoked x.wait ()

SHANDONG UNIVERSITY 67

Monitor with Condition Variables

SHANDONG UNIVERSITY 68

Solution to Dining Philosophers
monitor DP

{
enum { THINKING; HUNGRY, EATING} state [5] ;
condition self [5];

void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] != EATING) self [i].wait;

}

void putdown (int i) {
state[i] = THINKING;

// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}

SHANDONG UNIVERSITY 69

Solution to Dining Philosophers (cont)
void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;
self[i].signal () ;

}
}

initialization_code() {
for (int i = 0; i < 5; i++)

state[i] = THINKING;
}

}

SHANDONG UNIVERSITY 70

Solution to Dining Philosophers (cont)
 Each philosopher I invokes the operations

pickup()
and putdown() in the following sequence:

dp.pickup (i)

EAT

dp.putdown (i)

SHANDONG UNIVERSITY 71

Options after x.signal()
 Suppose P invokes x.signal(), and Q is a

suspended process with condition x
 Signal and wait -- P either waits until Q leaves the

monitor or waits for another condition
 Signal and continue – Q either waits until P leaves

the monitor or waits for another condition

 The first one is supported by Hoare.

SHANDONG UNIVERSITY 72

Monitor Implementation Using Semaphores
 Semaphore mutex (initialized to 1)
 use it to call the procedure exclusively
 So, before a process calls a procedure in a monitor,

it should first execute wait(mutex).
 After it exits from the monitor, it should execute

signal(mutex).

SHANDONG UNIVERSITY 73

Monitor Implementation Using Semaphores
 Semaphore next (initialized to 0)
 Once a process calls x.signal(), it uses wait(next) to

suspend itself.
 Int next-count (initialized to 0)
 Use it to record how many processes are waiting

on next.

SHANDONG UNIVERSITY 74

Monitor Implementation Using Semaphores
 Variables

semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next-count = 0;

 Each procedure F will be replaced by

wait(mutex);
…

body of F;

…
if (next-count > 0)

signal(next)
else

signal(mutex);

 Mutual exclusion within a monitor is ensured.

SHANDONG UNIVERSITY 75

Monitor Implementation Using Semaphores
 For each condition variable x, we have:

semaphore x-sem; // (initially = 0)
int x-count = 0;

 Semaphore x-sem (initialized to 0)
 Use it to suspend a process, when the resources this

process applies are not enough.

 When a type of resource is released, we should know
whether there are other processes waiting on this
resource. So a counter should be used to record the
number of processes waiting on this resource.

 Int x-count (initialized to 0)

SHANDONG UNIVERSITY 76

Monitor Implementation
 The operation x.wait can be implemented as:

x-count++;
if (next-count > 0)

signal(next);
else

signal(mutex);
wait(x-sem);
x-count--;

SHANDONG UNIVERSITY 77

Monitor Implementation
 The operation x.signal can be implemented as:

if (x-count > 0) {
next-count++;
signal(x-sem);
wait(next);
next-count--;

}

SHANDONG UNIVERSITY 78

Synchronization Examples
 Solaris
 Windows XP
 Linux
 Pthreads

SHANDONG UNIVERSITY 79

Solaris Synchronization
 Implements a variety of locks to support

multitasking, multithreading (including real-time
threads), and multiprocessing

 Uses adaptive mutexes for efficiency when
protecting data from short code segments

 Uses condition variables and readers-writers
locks when longer sections of code need
access to data

 Uses turnstiles to order the list of threads
waiting to acquire either an adaptive mutex or
reader-writer lock

SHANDONG UNIVERSITY 80

Windows XP Synchronization
 Uses interrupt masks to protect access to

global resources on uniprocessor systems
 Uses spinlocks on multiprocessor systems
 Also provides dispatcher objects which may act

as either mutexes and semaphores
 Dispatcher objects may also provide events
 An event acts much like a condition variable

SHANDONG UNIVERSITY 81

Linux Synchronization
 Linux:
 disables interrupts to implement short critical

sections

 Linux provides:
 semaphores
 spin locks

SHANDONG UNIVERSITY 82

Pthreads Synchronization
Pthreads API is OS-independent
 It provides:
 mutex locks
 condition variables

Non-portable extensions include:
 read-write locks
 spin locks

SHANDONG UNIVERSITY 83

Atomic Transactions
 System Model
 Log-based Recovery
 Checkpoints
 Concurrent Atomic Transactions

SHANDONG UNIVERSITY 84

System Model
 Assures that operations happen as a single logical

unit of work, in its entirety, or not at all
 Related to field of database systems
 Challenge is assuring atomicity despite computer

system failures
 Transaction - collection of instructions or operations

that performs single logical function
 Here we are concerned with changes to stable storage –

disk
 Transaction is series of read and write operations
 Terminated by commit (transaction successful) or abort

(transaction failed) operation
 Aborted transaction must be rolled back to undo any

changes it performed

SHANDONG UNIVERSITY 85

Types of Storage Media
 Volatile storage – information stored here does not

survive system crashes
 Example: main memory, cache

 Nonvolatile storage – Information usually survives
crashes
 Example: disk and tape

 Stable storage – Information never lost
 Not actually possible, so approximated via replication or

RAID to devices with independent failure modes

Goal is to assure transaction atomicity where failures cause loss of
information on volatile storage

SHANDONG UNIVERSITY 86

Log-Based Recovery
 Record to stable storage information about all

modifications by a transaction
 Most common is write-ahead logging
 Log on stable storage, each log record describes single

transaction write operation, including
 Transaction name
 Data item name
 Old value
 New value

 <Ti starts> written to log when transaction Ti starts
 <Ti commits> written when Ti commits

 Log entry must reach stable storage before
operation on data occurs

SHANDONG UNIVERSITY 87

Log-Based Recovery Algorithm
 Using the log, system can handle any volatile memory

errors
 Undo(Ti) restores value of all data updated by Ti

 Redo(Ti) sets values of all data in transaction Ti to new
values

 Undo(Ti) and redo(Ti) must be idempotent
 Multiple executions must have the same result as one

execution

 If system fails, restore state of all updated data via log
 If log contains <Ti starts> without <Ti commits>, undo(Ti)
 If log contains <Ti starts> and <Ti commits>, redo(Ti)

SHANDONG UNIVERSITY 88

Checkpoints
 Log could become long, and recovery could take long
 Checkpoints shorten log and recovery time.
 Checkpoint scheme:

1. Output all log records currently in volatile storage to stable
storage

2. Output all modified data from volatile to stable storage
3. Output a log record <checkpoint> to the log on stable

storage

Checkpoints
 Now recovery only includes Ti, such that Ti

started executing before the most recent
checkpoint, and all transactions after Ti. All
other transactions already on stable storage

 The recovery operations are as follows:
 For all transactions Tk that the record <Tk,

commits> appears in the log, execute redo(Tk)
 For all transactions Tk that have no <Tk commits>

record in the log, execute undo(Tk)

SHANDONG UNIVERSITY 89

SHANDONG UNIVERSITY 90

Concurrent Transactions
 Must be equivalent to serial execution –

serializability
 Could perform all transactions in critical section
 Inefficient, too restrictive

 Concurrency-control algorithms provide
serializability

SHANDONG UNIVERSITY 91

Serializability
 Consider two data items A and B
 Consider Transactions T0 and T1

 Execute T0, T1 atomically
 Execution sequence called schedule
 Atomically executed transaction order called

serial schedule
 For N transactions, there are N! valid serial

schedules

SHANDONG UNIVERSITY 92

Schedule 1: T0 then T1

SHANDONG UNIVERSITY 93

Nonserial Schedule
 Nonserial schedule allows overlapped execute
 Resulting execution not necessarily incorrect

 Consider schedule S, operations Oi, Oj
 Conflict if access same data item, with at least one

write
 If Oi, Oj consecutive operations of different

transactions Oi and Oj don’t conflict
 Then S’ with swapped order Oj Oi equivalent to S

 If S can become S’ via swapping nonconflicting
operations
 S is conflict serializable

SHANDONG UNIVERSITY 94

Schedule 2: Concurrent Serializable Schedule

SHANDONG UNIVERSITY 95

Serializable Schedule

T1 T2 T1 T2 T1 T2

Slock B

Y = B(=2)

Unlock B

Xlock A

A = Y + 1

写回A(=3)

Unlock A

X = A(= 3)

Unlock A

写回B(=4)

Unlock B

Slock A

Xlock B

B = X + 1

a 串行调度 c 不可串行化的调度
(结果与a,b不同，错误调度)

Slock B

Y = B(=2)

Unlock B

Xlock A

A = Y + 1

写回A(=3)

Unlock A

X = A(=2)

Unlock A

写回B(=3)

Unlock B

Slock A

Xlock B

B = X + 1

Slock B

Y = B(=2)

Unlock B

Xlock A

A = Y + 1

写回A(=3)

Unlock A

Slock A

X = A(=3)

Unlock A

写回B(=4)

Unlock B

Xlock B

B = X + 1

等待

等待

等待

T1 T2

Slock B

Y = B(=3)

Unlock B

Xlock A

A = Y + 1

写回A(=4)

Unlock A

X = A(=2)

Unlock A

写回B(=3)

Unlock B

Slock A

Xlock B

B = X + 1

d 可串行化的调度
(结果与a相同，正确调度)

b 串行调度

T1: 读B; A=B+1; 写回A; T2: 读A; B=A+1; 写回B; A,B初值均为2

SHANDONG UNIVERSITY 96

Locking Protocol
 Ensure serializability by associating lock with each

data item
 Follow locking protocol for access control

 Locks
 Shared – Ti has shared-mode lock (S) on item Q, Ti can read

Q but not write Q
 Exclusive – Ti has exclusive-mode lock (X) on Q, Ti can read

and write Q

 Require every transaction on item Q acquire
appropriate lock

 If lock already held, new request may have to wait
 Similar to readers-writers algorithm

SHANDONG UNIVERSITY 97

Two-phase Locking Protocol
 Generally ensures conflict serializability
 Each transaction issues lock and unlock

requests in two phases
 Growing – obtaining locks
 Shrinking – releasing locks

 Problem
 Does not prevent deadlock

SHANDONG UNIVERSITY 98

Timestamp-based Protocols
 Select order among transactions in advance –

timestamp-ordering
 Transaction Ti associated with timestamp TS(Ti)

before Ti starts
 TS(Ti) < TS(Tj) if Ti entered system before Tj
 TS can be generated from system clock or as

logical counter incremented at each entry of
transaction

 Timestamps determine serializability order
 If TS(Ti) < TS(Tj), system must ensure produced

schedule equivalent to serial schedule where Ti
appears before Tj

SHANDONG UNIVERSITY 99

Timestamp-based Protocol Implementation
 Data item Q gets two timestamps
 W-timestamp(Q) – largest timestamp of any transaction that

executed write(Q) successfully
 R-timestamp(Q) – largest timestamp of successful read(Q)
 Updated whenever read(Q) or write(Q) executed

 Timestamp-ordering protocol assures any conflicting
read and write executed in timestamp order

 Suppose Ti executes read(Q)
 If TS(Ti) < W-timestamp(Q), Ti needs to read value of Q that

was already overwritten
 read operation rejected and Ti rolled back

 If TS(Ti) ≥ W-timestamp(Q)
 read executed, R-timestamp(Q) set to max(R-timestamp(Q),

TS(Ti))

SHANDONG UNIVERSITY 100

Timestamp-ordering Protocol
 Suppose Ti executes write(Q)
 If TS(Ti) < R-timestamp(Q), value Q produced by Ti was

needed previously and Ti assumed it would never be
produced
 Write operation rejected, Ti rolled back

 If TS(Ti) < W-timestamp(Q), Ti attempting to write obsolete
value of Q
 Write operation rejected and Ti rolled back

 Otherwise, write executed

 Any rolled back transaction Ti is assigned new
timestamp and restarted

 Algorithm ensures conflict serializability and freedom
from deadlock

SHANDONG UNIVERSITY 101

Schedule Possible Under Timestamp Protocol

Example(1)
关于临界区问题（critical section problem）的一个算法（假设只有进程P0和
P1可能会进入该临界区）如下（i为0或1），该算法 。
A、不能保证进程互斥进入临界区，且会出现“饥饿”（Starvation)
B、不能保证进程互斥进入临界区，但不会出现“饥饿”
C、保证进程互斥进入临界区，但会出现“饥饿”
D、保证进程互斥进入临界区，不会出现“饥饿”
repeat
retry：if (turn!= -1) turn := i；

if (turn!=i) go to retry；
turn := -1；
Critical Section（临界区）
turn := 0；
remainder Section（其它区域）

until false；

SHANDONG UNIVERSITY 102

Example(2)
下述关于双进程临界区问题的算法（对编号为id的进程）是否正确：

do{

blocked[id]=true;

while(turn !=id)

{

while(blocked[1-id]);

turn=id;

}

<编号为id的进程的临界区 CS>

blocked[id]=false;

编号为id的进程的非临界区

} while (true)：

其中，布尔型数组blocked[2]初始值为为{false,false}，整型turn初始值为0
，id代表进程编号（0或1）。请说明它的正确性，或指出错误所在。

SHANDONG UNIVERSITY 103

若此时进程切换，且让对方再次进入临
界区，互斥条件无法满足

Example(3)

SHANDONG UNIVERSITY 104

wait(semaphore s)
{

waitB(mutex);
s = s-1;
if (s<0)
{

signalB(mutex);
waitB(delay);

}
else

signalB(mutex);
}

signal(semaphore s)
{

waitB(mutex);
s= s+1;
if(s<=0)

signalB(delay);
else
signalB(mutex);

}

1、s = 0 时，p1 calls wait() and p2 calls wait()并都
在执行waitB(delay)前交出CPU
2、p3 and p4 call signal()。此时本应允许p1 and p2
wakeup，但因delay升至1后无法再升，导致p1 or p2
中一个仍在wait(delay)

Example(4)
 某银行提供1个服务窗口和10个供顾客等待的座位。顾客到达银行时，若有空座位，则到

取号机上领取一个号，等待叫号。取号机每次仅允许一位顾客使用。当营业员空闲时，通
过叫号选取一位顾客，并为其服务。顾客和营业员的活动过程描述如下：

 请添加必要的信号量和P、V(或wait()、signal())操作，实现上述过程中的互斥与同步。
要求写出完整的过程，说明信号量的含义并赋初值。

SHANDONG UNIVERSITY 105

process 顾客i
{

从取号机获得一个号码;
等待叫号;
获得服务;

}

process 营业员
{

while (TRUE)
{

叫号;
为顾客服务;

}
}

 Semaphore seats =10;//表示空余座位数量的资源信号量，初值为10

 Semaphore mutex = 1; //管理取号机的互斥信号量，初值为1，表示取号机空闲

 Semaphore custom = 0; //表示顾客数量的资源信号量，初值为0

SHANDONG UNIVERSITY 106

Process 顾客
{

P(seats); //找个空座位
P(mutex); //在看看取号机是否空闲
从取号机取号;
V(mutex) //放开那个取号机
V(custom); //取到号，告诉营业员有顾客
等待叫号;
V(seats) //被叫号，离开座位
接受服务;

}

Process 营业员
{

While(true)
{

P(custom); //看看有没有等待的顾客
叫号;
为顾客服务;

}
}

SHANDONG UNIVERSITY 107

Assignments
 6.3, 6.7, 6.9, 6.11, 6.16
 Apple, orange problem

End of Chapter 6

Any Question?

	Chapter 6
	Contents
	Objectives
	Background
	Producer and Consumer Problem
	Shared-Memory Solution
	Producer Process
	Consumer Process
	One solution to this problem
	Producer
	Consumer
	Problem
	Race Condition
	Background
	Critical-Section
	Critical-Section Problem
	Solution to Critical-Section Problem
	Principles to use critical section
	Algorithm 1
	Algorithm 2
	Peterson’s Solution
	Algorithm for Process Pi
	Solution to multiprocess problem
	Solution to multiprocess problem
	Solution to multiprocess problem
	Eisenberg/Mcguire
	Eisenberg/Mcguire
	Synchronization Hardware
	TestAndSet Instruction
	Solution using TestAndSet
	Solution using TestAndSet
	Swap Instruction
	Solution using Swap
	Solution using Swap
	Semaphore
	Semaphore as General Synchronization Tool
	How to provide mutual exclusion and synchronization
	Semaphore Implementation
	Semaphore Implementation with no Busy waiting
	Semaphore Implementation with no Busy waiting (Cont.)
	Deadlock and Starvation
	Binary Semaphore
	Binary Semaphore
	Wait() and signal() operation
	Classical Problems of Synchronization
	Bounded-Buffer Problem
	Bounded Buffer Problem (Cont.)
	Readers-Writers Problem
	Two classes
	Readers-Writers Problem (Cont.)
	Readers-Writers Problem (Cont.)
	Problems
	Readers-Writers Problem (Cont.)
	Readers-Writers Problem (Cont.)
	Dining-Philosophers Problem
	Dining-Philosophers Problem (Cont.)
	Problem
	Sleeping-Barber problem
	Sleeping-Barber problem
	Apple and orange problem
	Problems with Semaphores
	Problems to use semaphore
	Monitors
	Monitors
	Schematic view of a Monitor
	Condition Variables
	Monitor with Condition Variables
	Solution to Dining Philosophers
	Solution to Dining Philosophers (cont)
	Solution to Dining Philosophers (cont)
	Options after x.signal()
	Monitor Implementation Using Semaphores
	Monitor Implementation Using Semaphores
	Monitor Implementation Using Semaphores
	Monitor Implementation Using Semaphores
	Monitor Implementation
	Monitor Implementation
	Synchronization Examples
	Solaris Synchronization
	Windows XP Synchronization
	Linux Synchronization
	Pthreads Synchronization
	Atomic Transactions
	System Model
	Types of Storage Media
	Log-Based Recovery
	Log-Based Recovery Algorithm
	Checkpoints
	Checkpoints
	Concurrent Transactions
	Serializability
	Schedule 1: T0 then T1
	Nonserial Schedule
	Schedule 2: Concurrent Serializable Schedule
	Serializable Schedule
	Locking Protocol
	Two-phase Locking Protocol
	Timestamp-based Protocols
	Timestamp-based Protocol Implementation
	Timestamp-ordering Protocol
	 Schedule Possible Under Timestamp Protocol
	Example(1)
	Example(2)
	Example(3)
	Example(4)
	幻灯片编号 106
	Assignments
	End of Chapter 6

