
Chapter 8 Main MemoryChapter 8 Main Memory

SHANDONG UNIVERSITY 1

Contents
 Background
 Swapping Swapping
 Contiguous Memory Allocation
 Paging
 Structure of the Page Table Structure of the Page Table
 Segmentation
 Example: The Intel Pentium

SHANDONG UNIVERSITY 2

Objectives
 To provide a detailed description of various

ways of organizing memory hardwareways of organizing memory hardware
 To discuss various memory-management

t h i i l di i d t titechniques, including paging and segmentation
 To provide a detailed description of the Intel

Pentium, which supports both pure
segmentation and segmentation with pagingg g p g g

SHANDONG UNIVERSITY 3

Background
 Program must be brought (from disk) into

memory and placed within a process for it to be y p p
run

 Main memory and registers are only storage Main memory and registers are only storage
CPU can access directly

 Register access in one CPU clock (or less) Register access in one CPU clock (or less)
 Main memory can take many cycles
 C h it b t i d CPU Cache sits between main memory and CPU

registers
 Protection of memory required to ensure

correct operation

SHANDONG UNIVERSITY 4

Dynamic memory allocation

SHANDONG UNIVERSITY 5

Base and Limit Registers
 A pair of base and limit registers define the

logical address spacelogical address space

SHANDONG UNIVERSITY 6

HW address protection with base and limit registers

SHANDONG UNIVERSITY 7

Multi-step Processing of a User Program
 In different step, address has different form

 Symbol
R l t bl dd Relocatable address

 Absolute address

SHANDONG UNIVERSITY 8

Binding of Instructions and Data to Memory
 Address binding of instructions and data to

memory addresses can happen at three y pp
different stages
 Compile time: If memory location known a priori, p y p ,

absolute code can be generated; must recompile
code if starting location changes

 Load time: Must generate relocatable code if
memory location is not known at compile time

 E ti ti Bi di d l d til ti if Execution time: Binding delayed until run time if
the process can be moved during its execution
from one memory segment to another Needfrom one memory segment to another. Need
hardware support for address maps (e.g., base and
limit registers)

SHANDONG UNIVERSITY 9

Logical and physical address

Physical address spaceSource code Logical address space

0

g p

BA=1000

Load A data1 Load A 200100

Address map

Load A 1200Load A data1 Load A 200100

Compile
li k

3456
。

1200

200

link

。
。

data1 3456 3456200

SHANDONG UNIVERSITY 10

Logical vs. Physical Address Space
 The concept of a logical address space that is

bound to a separate physical address spacep p y p
is central to proper memory management
 Logical address – generated by the CPU; also g g y ;

referred to as virtual address
 Physical address – address seen by the memory

unit
 Logical and physical addresses are the same

in compile-time and load-time address-binding
schemes; logical (virtual) and physical
addresses differ in execution-time address-
binding scheme

SHANDONG UNIVERSITY 11

Memory-Management Unit (MMU)
 Hardware device that maps virtual to physical

addressaddress

 I MMU h th l i th l ti In MMU scheme, the value in the relocation
register is added to every address generated
by a user process at the time it is sent to
memory

 The user program deals with logical addresses; The user program deals with logical addresses;
it never sees the real physical addresses

SHANDONG UNIVERSITY 12

Dynamic relocation using a relocation register

SHANDONG UNIVERSITY 13

Dynamic Loading
 Routine is not loaded until it is called
 Better memory space utilization; unused Better memory-space utilization; unused

routine is never loaded
 Useful when large amounts of code are

needed to handle infrequently occurring cases
 No special support from the operating system

is required implemented through programis required implemented through program
design

SHANDONG UNIVERSITY 14

Dynamic Linking
 Linking postponed until execution time
 Small piece of code stub used to locate the Small piece of code, stub, used to locate the

appropriate memory-resident library routine
 Stub replaces itself with the address of the Stub replaces itself with the address of the

routine, and executes the routine
 Operating system needed to check if routine is Operating system needed to check if routine is

in processes’ memory address
 D i li ki i ti l l f l f Dynamic linking is particularly useful for

libraries
 It can be extended to library updates.
 System also known as shared libraries

SHANDONG UNIVERSITY 15

y

Swapping
 A process can be swapped temporarily out of memory to a backing

store, and then brought back into memory for continued execution

 Backing store – fast disk large enough to accommodate copies of
all memory images for all users; must provide direct access to
these memory images

 Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
hi h i it b l d d d t dhigher-priority process can be loaded and executed

 Major part of swap time is transfer time; total transfer time is directly
proportional to the amount of memory swappedproportional to the amount of memory swapped

 Modified versions of swapping are found on many systems (i.e.,
UNIX Linux and Windows)UNIX, Linux, and Windows)

 System maintains a ready queue of ready-to-run processes which
ha e memor images on disk

SHANDONG UNIVERSITY 16

have memory images on disk

Schematic View of Swapping

SHANDONG UNIVERSITY 17

Problems in swapping
 When to swap
 Which to be swapped Which to be swapped
 Where to be swapped in
 Affected by bounding technology

 Other factors Other factors
 A process to be swapped must be idle

Swap time should be considered.

SHANDONG UNIVERSITY 18

Contiguous Allocation
 Main memory usually into two partitions:
 Resident operating system, usually held in low memory with p g y , y y

interrupt vector
 User processes then held in high memory

 Relocation registers used to protect user processes
f h th d f h i ti tfrom each other, and from changing operating-system
code and data
 Base register contains al e of smallest ph sical address Base register contains value of smallest physical address
 Limit register contains range of logical addresses – each

logical address must be less than the limit registerlogical address must be less than the limit register
 MMU maps logical address dynamically

SHANDONG UNIVERSITY 19

Contiguous Allocation

SHANDONG UNIVERSITY 20

Contiguous Allocation (Cont.)
 Multiple-partition allocation
 Hole – block of available memory; holes of various Hole – block of available memory; holes of various

size are scattered throughout memory
 When a process arrives it is allocated memory When a process arrives, it is allocated memory

from a hole large enough to accommodate it
 Operating system maintains information about: Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

SHANDONG UNIVERSITY 21

Contiguous Allocation (Cont.)
 Dynamic allocation scheme

OS OS OS OSOS

process 5

OS

process 5

OS

process 5

OS

process 5

process 9process 9

process 8

process 2 process 2 process 2

p

process 2

p

process 10

process 2 process 2 process 2 process 2

SHANDONG UNIVERSITY 22

Dynamic Storage-Allocation Problem
 How to satisfy a request of size n from a list of

free holesfree holes
 First-fit: Allocate the first hole that is big enough
 Best fit Allocate the smallest hole that is big Best-fit: Allocate the smallest hole that is big

enough; must search entire list, unless ordered by
sizesize
 Produces the smallest leftover hole

 Worst fit: Allocate the largest hole; must also Worst-fit: Allocate the largest hole; must also
search entire list
 Produces the largest leftover hole Produces the largest leftover hole

First-fit and best-fit better than worst-fit in terms of
speed and storage utilization

SHANDONG UNIVERSITY 23

speed and storage utilization

Example
0K0K

15K

始址 长度 标志

15K 23K 未分配

48K 20K 未分配

38K

48K 20K 未分配

80K 30K 未分配

空

48K

已分配区表

空

空

68K

80K
始址 长度 标志

0K 15K J1

110K

38K 10K J2

68K 12K J3110K

120K
110K 10K J4

空

空

SHANDONG UNIVERSITY 24

空
Suppose that a program needs 19k

Fragmentation
 External Fragmentation – total memory space exists

to satisfy a request, but it is not contiguous
 Internal Fragmentation – allocated memory may be

slightly larger than requested memory; this size
difference is memory internal to a partition but notdifference is memory internal to a partition, but not
being used

 Reduce external fragmentation by compaction Reduce external fragmentation by compaction
 Shuffle memory contents to place all free memory together

in one large block
 Compaction is possible only if relocation is dynamic, and is

done at execution time
 I/O problem I/O problem
 Latch job in memory while it is involved in I/O
 Do I/O only into OS buffers

SHANDONG UNIVERSITY 25

y

Paging
 physical address space of a process can be

noncontiguous; process is allocated physical memory
whenever the latter is availablewhenever the latter is available

 Divide physical memory into fixed-sized blocks called
frames (size is power of 2, between 512 bytes and (p , y
8,192 bytes)

 Divide logical memory into blocks of same size called
pagespages

 Keep track of all free frames
 To run a program of size n pages need to find n free To run a program of size n pages, need to find n free

frames and load program
 Set up a page table to translate logical to physical p p g g p y

addresses
 Internal fragmentation

SHANDONG UNIVERSITY 26

Address Translation Scheme
 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table
which contains base address of each page in physical
memorymemory

 Page offset (d) – combined with base address to define the
physical memory address that is sent to the memory unitphysical memory address that is sent to the memory unit

page number page offset

p d

m - n n

 For given logical address space 2m and page size 2n

SHANDONG UNIVERSITY 27

Paging Hardware

SHANDONG UNIVERSITY 28

Paging Model of Logical and Physical Memory

SHANDONG UNIVERSITY 29

Paging Example

SHANDONG UNIVERSITY 30

Free Frames

SHANDONG UNIVERSITY 31

Implementation of Page Table
 Page table is kept in main memory
 Page-table base register (PTBR) points to the page

t bltable
 Page-table length register (PRLR) indicates size of

the page tablethe page table
 In this scheme every data/instruction access requires

two memory accesses. One for the page table and
f th d t /i t tione for the data/instruction.

 The two memory access problem can be solved by
the use of a special fast-lookup hardware cache calledthe use of a special fast-lookup hardware cache called
associative memory or translation look-aside
buffers (TLBs)

 Some TLBs store address-space identifiers (ASIDs)
in each TLB entry – uniquely identifies each process
to provide address-space protection for that process

SHANDONG UNIVERSITY 32

to provide address space protection for that process

Associative Memory
 Associative memory – parallel search

Page # Frame #

Address translation (p, d)
 If p is in associative register, get frame # outp g , g
 Otherwise get frame # from page table in memory

SHANDONG UNIVERSITY 33

Paging Hardware With TLB

SHANDONG UNIVERSITY 34

Effective Access Time
 Associative Lookup =  time unit
 Assume memory cycle time is 1 microsecond Assume memory cycle time is 1 microsecond
 Hit ratio – percentage of times that a page

number is found in the associative registers;
ratio related to number of associative registers

 Hit ratio = 
 Effective Access Time (EAT) Effective Access Time (EAT)

EAT = (1 + )  + (2 + )(1 – )
= 2 +  – 

SHANDONG UNIVERSITY 35

Memory Protection
 Memory protection implemented by associating

protection bit with each frameprotection bit with each frame

 V lid i lid bit tt h d t h t i th Valid-invalid bit attached to each entry in the
page table:
 “valid” indicates that the associated page is in the

process’ logical address space, and is thus a legal
page

 “invalid” indicates that the page is not in the
process’ logical address space

SHANDONG UNIVERSITY 36

Valid (v) or Invalid (i) Bit In A Page Table

SHANDONG UNIVERSITY 37

Shared Pages
 Shared code
 One copy of read-only (reentrant) code shared One copy of read-only (reentrant) code shared

among processes (i.e., text editors, compilers,
window systems).window systems).

 Shared code must appear in same location in the
logical address space of all processes (To belogical address space of all processes (To be
specific, it is at least same offset from start of page)

 Private code and data Private code and data
 Each process keeps a separate copy of the code

and dataand data
 The pages for the private code and data can

appear anywhere in the logical address space
SHANDONG UNIVERSITY 38

appear anywhere in the logical address space

Shared Pages Example

SHANDONG UNIVERSITY 39

Structure of the Page Table
 Problems of the contiguous page table

 Methods
 Hierarchical Paging
 Hashed Page Tablesg
 Inverted Page Tables

SHANDONG UNIVERSITY 40

Hierarchical Page Tables
 Break up the logical address space into

multiple page tablesmultiple page tables

 A simple technique is a two-level page table

SHANDONG UNIVERSITY 41

Two-Level Page-Table Scheme

SHANDONG UNIVERSITY 42

Two-Level Paging Example
 A logical address (on 32-bit machine with 4K page size) is divided into:

 a page number consisting of 20 bits
 a page offset consisting of 12 bits

 Since the page table is paged, the page number is further divided into:
 a 12-bit page number
 a 10-bit page offset

 f Thus, a logical address is as follows:

page number page offsetp g p g

p1 p2 d

where p1 is an index into the outer page table, and p2 is the displacement
ithi th f th t t bl

10 10 12

within the page of the outer page table

SHANDONG UNIVERSITY 43

Address-Translation Scheme

SHANDONG UNIVERSITY 44

Three-level Paging Scheme

SHANDONG UNIVERSITY 45

Hashed Page Tables
 Common in address spaces > 32 bits

 The virtual page number is hashed into a page
table. This page table contains a chain of
elements hashing to the same location.

 Virtual page numbers are compared in this Virtual page numbers are compared in this
chain searching for a match. If a match is
f d th di h i l f ifound, the corresponding physical frame is
extracted.

SHANDONG UNIVERSITY 46

Hashed Page Table

SHANDONG UNIVERSITY 47

Inverted Page Table
 One entry for each real page of memory
 Each entry consists of the virtual address of Each entry consists of the virtual address of

the page stored in that real memory location,
ith i f ti b t th th twith information about the process that owns

that page
 Decreases memory needed to store each page

table, but increases time needed to search the ,
table when a page reference occurs

 Use hash table to limit the search to one — or Use hash table to limit the search to one — or
at most a few — page-table entries

SHANDONG UNIVERSITY 48

Inverted Page Table Architecture

SHANDONG UNIVERSITY 49

Segmentation
 Memory-management scheme that supports user view

of memory
 A i ll ti f t A t i A program is a collection of segments. A segment is a

logical unit such as:
main programmain program,
procedure,
function,,
method,
object,
local variables, global variables,
common block,
stack,
symbol table, arrays

SHANDONG UNIVERSITY 50

User’s View of a Program

SHANDONG UNIVERSITY 51

Logical View of Segmentation

1

4
1

2

23

2

4

3

user space

SHANDONG UNIVERSITY 52

Segmentation Architecture
 Logical address consists of a two tuple:

<segment-number offset>segment number, offset ,
 Segment table – maps two-dimensional physical

addresses; each table entry has:addresses; each table entry has:
 base – contains the starting physical address where the

segments reside in memoryg y
 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the g g () p
segment table’s location in memory

 Segment-table length register (STLR) indicates g g g ()
number of segments used by a program;

segment number s is legal if s < STLR

SHANDONG UNIVERSITY 53

g g

Segmentation Architecture (Cont.)
 Protection
 With each entry in segment table associate: With each entry in segment table associate:
 validation bit = 0  illegal segment
 read/write/execute privileges read/write/execute privileges

 Protection bits associated with segments; code
h i t t l lsharing occurs at segment level

 Since segments vary in length, memory
allocation is a dynamic storage-allocation
problemp

 A segmentation example is shown in the
following diagram

SHANDONG UNIVERSITY 54

following diagram

Segmentation Hardware

SHANDONG UNIVERSITY 55

Example of Segmentation

SHANDONG UNIVERSITY 56

段表基址寄存器 段表长度寄存器 逻辑地址

ClCb 段号S 段内地址d
段表基址寄存器 段表长度寄存器 逻辑地址

+ 比较

段表
S>= Cl

TLB 地址越界

d>=l

比较

S l b

地址越界

l b . ..
S l b

d> l
比较

d>=l

SHANDONG UNIVERSITY 57

b + d
物理地址

Segmentation vs. paging
 Similarity:
  Address space can exceed size of real memory.
 Differences: Differences:
  Programmer is aware of segmentation. Paging is hidden.
  Segmentation allows procedures and data to be separately

protected This is hard with pagingprotected. This is hard with paging.
  Segmentation easily permits tables whose size varies.
  Segmentation facilitates sharing of procedures between

Thi i h d ith iprocesses. This is hard with paging.
  Pure segmentation suffers from memory fragmentation.

SHANDONG UNIVERSITY 58

Example: The Intel Pentium
 Supports both segmentation and segmentation

with pagingwith paging
 CPU generates logical address
 Given to segmentation unit
 Which produces linear addresses

 Linear address given to paging unit
 Which generates physical address in main memory
 Paging units form equivalent of MMU

SHANDONG UNIVERSITY 59

Logical to Physical Address Translation in Pentium

SHANDONG UNIVERSITY 60

Intel Pentium Segmentation
 X86 Processor has Several segment registers
 CS (code segment)CS (code segment)
 DS (Data Segment)
 SS (Stack segment) SS (Stack segment)
 ES (Extra segment)
 GS & FS segment GS & FS segment

 Pentium allows a segment to be as large as 4 GB Pentium allows a segment to be as large as 4 GB
 Selector is 16 bit
 Offset is 32 bit Offset is 32 bit

SHANDONG UNIVERSITY 61

Intel Pentium Segmentation
 It allows a segment to be as large as 4GB, and the

maximum number of segments per process is 16KB.

Selector(16bits) offset(32bits)

 Index designates the segment number
 G/L indicates whether the segment is in the GDT or LDT
 GDT—Global Descriptor Table (one for the system)
 LDT—Local Descriptor Table (one per process)

SHANDONG UNIVERSITY 62

 RPL deals with protection

SHANDONG UNIVERSITY 63

Intel Pentium Segmentation

SHANDONG UNIVERSITY 64

Intel Pentium Segmentation

SHANDONG UNIVERSITY 65

Pentium Paging Architecture

SHANDONG UNIVERSITY 66

Three-level Paging in Linux
 Linux does rely on segmentation. On the

Pentium it uses only six segmentsPentium, it uses only six segments.
 A segment for kernel code
 A segment for kernel data A segment for kernel data
 A segment for user code
 A segment for user data
 A task-state segment
 A default LDT segment

SHANDONG UNIVERSITY 67

Linear Address in Linux
Broken into four parts:

SHANDONG UNIVERSITY 68

SHANDONG UNIVERSITY 69

Assignments
 8.5, 8.6, 8.9, 8.12

SHANDONG UNIVERSITY 70

End of Chapter 8End of Chapter 8

Any Question?

