
Chapter 9 Virtual MemoryChapter 9 Virtual Memory

SHANDONG UNIVERSITY 1

Contents
 Background
 Demand Paging Demand Paging
 Copy-on-Write
 P R l t Page Replacement
 Allocation of Frames
 Thrashing
 Memory-Mapped Files Memory Mapped Files
 Allocating Kernel Memory
 Other Considerations Other Considerations
 Operating-System Examples

SHANDONG UNIVERSITY 2

Objectives
 To describe the benefits of a virtual memory

systemsystem

 T l i th t f d d i To explain the concepts of demand paging,
page-replacement algorithms, and allocation of

fpage frames

 To discuss the principle of the working-set
modelmodel

SHANDONG UNIVERSITY 3

Background
 Normal method for memory management
 One time One time
 Stay in memory for ever

 A t ll th ti i t d d ll Actually, the entire program is not needed all
the time:
 The code to handle unusual conditions
 Arrays, lists and tablesy ,
 Certain options and features of a program

SHANDONG UNIVERSITY 4

Background
 Problems
 Big program Big program
 Occupy memory

 S l ti Solution
 Increase your memory capacity
 Other technologies: dynamic load, overlap, swap
 Virtual memoryy

SHANDONG UNIVERSITY 5

Background
 Virtual memory – separation of user logical

memory from physical memorymemory from physical memory.
 Only part of the program needs to be in memory for

executionexecution
 Logical address space can therefore be much

larger than physical address spacelarger than physical address space
 Allows address spaces to be shared by several

processesprocesses
 Allows for more efficient process creation

SHANDONG UNIVERSITY 6

Virtual Memory That is Larger Than Physical Memory

SHANDONG UNIVERSITY 7

Virtual-address Space
 It refers to the logical view of how a process is stored in memory
 It begins at a certain logical address and exists in contiguous memory.

SHANDONG UNIVERSITY 8

Shared Library Using Virtual Memory

SHANDONG UNIVERSITY 9

Technologies to implement VM
 Virtual memory can be implemented via:
 Demand paging Demand paging
 Demand segmentation

SHANDONG UNIVERSITY 10

Demand Paging
 Bring a page into memory only when it is needed
 Less I/O needed
 Less memory needed
 Faster response
 More users

 Page is needed  reference to it
 invalid reference  abort
 not-in-memory  bring to memory

 Lazy swapper – never swaps a page into memory
l ill b d dunless page will be needed

 Swapper that deals with pages is a pager

SHANDONG UNIVERSITY 11

Transfer of a Paged Memory to Contiguous Disk Space

SHANDONG UNIVERSITY 12

Valid-Invalid Bit
 With each page table entry a valid–invalid bit is associated

(v  in-memory, i  not-in-memory)
 Initially valid–invalid bit is set to i on all entries
 E l f t bl h t Example of a page table snapshot:

v
Frame # valid-invalid bit

v
v
v
i

….

i
i

page table

 During address translation, if valid–invalid bit in page table entry
is i  page fault

SHANDONG UNIVERSITY 13

Page Table When Some Pages Are Not in Main Memory

SHANDONG UNIVERSITY 14

Page Fault
 If there is a reference to a page, first reference to that

page will trap to operating system:p g p p g y
page fault

1 Operating system looks at another table to decide:1. Operating system looks at another table to decide:
 Invalid reference  abort
 Just not in memoryJust not in memory

2. Get empty frame
3 Swap page into frame3. Swap page into frame
4. Reset tables
5 S t lid ti bit5. Set validation bit = v
6. Restart the instruction that caused the page fault

SHANDONG UNIVERSITY 15

Steps in Handling a Page Fault

SHANDONG UNIVERSITY 16

Demand paging
 Pure demand paging
 Never bring a page into memory until it is required Never bring a page into memory until it is required.

 Locality of reference
 The hardware to support demand paging
 Page tableg
 Secondary memory

SHANDONG UNIVERSITY 17

Performance of Demand Paging
 Page Fault Rate 0  p  1.0
 if p = 0 no page faultsif p 0 no page faults
 if p = 1, every reference is a fault

 Effective Access Time (EAT)
EAT = (1 – p) x memory accessEAT = (1 p) x memory access

+ p (page fault overhead
t+ swap page out

+ swap page in
+ restart overhead

)
SHANDONG UNIVERSITY 18

)

Demand Paging Example
 Memory access time = 200 nanoseconds

 Average page-fault service time = 8 milliseconds

 EAT = (1 – p) x 200 + p (8 milliseconds)
= (1 p x 200 + p x 8 000 000= (1 – p x 200 + p x 8,000,000
= 200 + p x 7,999,800

 If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.

SHANDONG UNIVERSITY 19

Process Creation
 Virtual memory allows other benefits during

process creation:process creation:

C W it- Copy-on-Write

- Memory-Mapped Files (later)

SHANDONG UNIVERSITY 20

Copy-on-Write
 Copy-on-Write (COW) allows both parent and

child processes to initially share the same p y
pages in memory

If either process modifies a shared page, only
then is the page copied

 COW allows more efficient process creation as COW allows more efficient process creation as
only modified pages are copied

 Free pages are allocated from a pool of
zeroed out pages

SHANDONG UNIVERSITY 21

zeroed-out pages

vfork
 UNIX系统的某些版本提供fork调用的变种，比

如：vfork如：vfork。

 Vfork产生的子进程会使用父进程的所有地址空
间间

SHANDONG UNIVERSITY 22

Before Process 1 Modifies Page C

SHANDONG UNIVERSITY 23

After Process 1 Modifies Page C

SHANDONG UNIVERSITY 24

What happens if there is no free frame?
 Page replacement – find some page in

memory but not really in use swap it outmemory, but not really in use, swap it out
 algorithm
 performance want an algorithm which will result performance – want an algorithm which will result

in minimum number of page faults
 S b b ht i t Same page may be brought into memory

several times

SHANDONG UNIVERSITY 25

Need For Page Replacement

SHANDONG UNIVERSITY 26

Basic Page Replacement
1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use itIf there is a free frame, use it
- If there is no free frame, use a page

replacement algorithm to select a victimep ace e t a go t to se ect a ct
frame

3. Bring the desired page into the (newly) free
frame; update the page and frame tablesframe; update the page and frame tables

4 Restart the process
SHANDONG UNIVERSITY 27

4. Restart the process

Page Replacement

SHANDONG UNIVERSITY 28

Page Replacement
 Prevent over-allocation of memory by modifying page-

fault service routine to include page replacementp g p
 Use modify (dirty) bit to reduce overhead of page

transfers – only modified pages are written to disky p g
 Page replacement completes separation between

logical memory and physical memory – large virtual g y p y y g
memory can be provided on a smaller physical
memory

 Two major problems to implement demand paging
 Frame-allocation algorithmg
 Page-replacement algorithm

SHANDONG UNIVERSITY 29

Page Replacement Algorithms
 Want lowest page-fault rate

 Evaluate algorithm by running it on a particular string
of memory references (reference string) andof memory references (reference string) and
computing the number of page faults on that string

 In all our examples, the reference strings are as
follows:follows:

1 2 3 4 1 2 5 1 2 3 4 51, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

SHANDONG UNIVERSITY 30

Graph of Page Faults Versus The Number of Frames

SHANDONG UNIVERSITY 31

FIFO Page Replacement

15 page faults

SHANDONG UNIVERSITY 32

FIFO Algorithm-- Belady’s Anomaly
 在FIFO算法中，有时侯帧数的增加反而会使缺页次数增加，

如下例：number of frames is 3 or 4
 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
 3 frames (3 pages can be in memory at a time per process)

1 2 3 4 1 2 5 1, 2 3 4 5

1 1 44 4 51 5 5

2 1

2

2

3

1

3

1

2

2

3

3

2

3

423 3 23 2 4

9 page faults

SHANDONG UNIVERSITY 33

Belady’s Anomaly

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 4 45 5 5 51 1

2

1

2

3

1

2

3

4

1

2

4

5

2

5

2

3

5

1

3

5

1

2

5

1

23 3

4

2

3

2

3

3

4

3

4

2

4

2

3

10 page faults

SHANDONG UNIVERSITY 34

FIFO Illustrating Belady’s Anomaly

SHANDONG UNIVERSITY 35

Optimal Algorithm
 Replace page that will not be used for longest

period of timeperiod of time
 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
1 4

2

3

6 page faults

3

4 5

SHANDONG UNIVERSITY 36

Optimal Page Replacement

 How do you know this?
 Used for measuring how well your algorithm Used for measuring how well your algorithm

performs

SHANDONG UNIVERSITY 37

Least Recently Used (LRU) Algorithm
 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

5

2

1

2

1

2

1

2

1

2

4

3

3

4

5

4

5

3

4

3

SHANDONG UNIVERSITY 38

LRU Algorithm (Cont.)
 Counter implementation
 Every page entry has a counter; every time page is Every page entry has a counter; every time page is

referenced through this entry, copy the clock into
the counterthe counter

 When a page needs to be changed, look at the
counters to determine which are to changecounters to determine which are to change

 Problems
 S h ti Search time
 Overflow of the clock

SHANDONG UNIVERSITY 39

LRU Algorithm (Cont.)
 Stack implementation – keep a stack of page

numbers in a double link form:numbers in a double link form:
 Page referenced:
 move it to the top move it to the top
 requires 6 pointers to be changed

 No search for replacement No search for replacement
 The top of the stack is always the most recently used

pagepage
 The bottom is the LRU page

SHANDONG UNIVERSITY 40

Use Of A Stack to Record The Most Recent Page References

SHANDONG UNIVERSITY 41

LRU Approximation Algorithms
Reference bit
 With each page associate a bit initially = 0 With each page associate a bit, initially = 0
 When page is referenced bit set to 1
 Replace the one which is 0 (if one exists)
 We do not know the order, however

 Additional-reference-bits algorithm
 Gain additional ordering information by recording Gain additional ordering information by recording

the reference bits at regular intervals.
 8bits 8bits
 Every 100 milliseconds

SHANDONG UNIVERSITY 42

LRU Approximation Algorithms
Second chance
 Need reference bit Need reference bit
 Clock replacement
 If page to be replaced (in clock order) has

reference bit = 1 then:
 set reference bit 0
 leave page in memory
 replace next page (in clock order), subject to same

rules

SHANDONG UNIVERSITY 43

Second-Chance (clock) Page-Replacement Algorithm

SHANDONG UNIVERSITY 44

Enhanced Second-Chance Algorithm
 Use an order pair: Reference bit and Modify bit
 4 possible classes:

 (0,0) neither recently used nor modified—best page to replace
 (0,1) not recently used but modified—not quite as good. The page will be

written out before replacementwritten out before replacement
 (1,0) recently used but clean—it probably will be used again soon
 (1,1) recently used and modified– it probably will be used again soon, and (,) y p y g ,

the page will be need to be written out to disk before it can be replaced
 Replace the first page encountered in the lowest nonempty class
 Compared clock algorithm, this algorithm give preference to those

pages that have not been modified to reduce the number of I/Os
requiredrequired

SHANDONG UNIVERSITY 45

Counting Algorithms
 Keep a counter of the number of references

that have been made to each pagethat have been made to each page

 LFU Al ith (L t F tl U d) LFU Algorithm(Least Frequently Used):
replaces page with smallest count

 MFU Algorithm(Most Frequently Used): g (q y)
based on the argument that the page with the
smallest count was probably just brought insmallest count was probably just brought in
and has yet to be used

SHANDONG UNIVERSITY 46

Page-buffering algorithms
 Keep a pool of free frames
 The desired page is read into a free frame form The desired page is read into a free frame form

the pool before the victim is written out.
 When the victim is later written out, its frame is

added to the free-frame pool.

 This method can be used combined with other This method can be used combined with other
algorithms.

SHANDONG UNIVERSITY 47

Allocation of Frames
 Each process needs minimum number of

pagespages
 Example: IBM 370 – 6 pages to handle SS

MOVE i t tiMOVE instruction:
 instruction is 6 bytes, might span 2 pages
 2 pages to handle from
 2 pages to handle top g

 Two major allocation schemes
 fixed allocation fixed allocation
 priority allocation

SHANDONG UNIVERSITY 48

Fixed Allocation
 Equal allocation – For example, if there are 100 frames

and 5 processes, give each process 20 frames.
 Proportional allocation – Allocate according to the size of

process
fi

m
sS

ps

i

ii






framesofnumbertotal

processofsize

m
S
spa

m

i
ii  for allocation

framesofnumbertotal

64m

127
10
64

2 




s
s
m

i

127

564
137
10

1

2

a

SHANDONG UNIVERSITY 49

5964
137
127

2 a

Fixed Allocation
 特点

 每个进程所分配的数量会随着多道程序的级别而有 每个进程所分配的数量会随着多道程序的级别而有
所变化。多道程序程度增加，那么每个进程会失去
一些帧以提供给新来进程使用。反之，原来分配给些帧以提供给新来进程使用。反之，原来分配给
离开进程的帧可以分配给剩余进程

 高优先级进程与低优先级进程在这种分配方式下没 高优先级进程与低优先级进程在这种分配方式下没
有任何区别

SHANDONG UNIVERSITY 50

Priority Allocation
 Use a proportional allocation scheme using

priorities rather than sizepriorities rather than size

 If P t f lt If process Pi generates a page fault,
 select for replacement one of its frames
 select for replacement a frame from a process with

lower priority number

SHANDONG UNIVERSITY 51

Global vs. Local Allocation
 Global replacement – process selects a

replacement frame from the set of all frames;replacement frame from the set of all frames;
one process can take a frame from another

 L l l t h l t Local replacement – each process selects
from only its own set of allocated frames

SHANDONG UNIVERSITY 52

Thrashing
 颠簸：进程的频繁的页调度行为
 页错误显著增加页错误显著增加

 吞吐量徒降

 有效访问时间增加

 If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:
 low CPU utilization
 operating system thinks that it needs to increase the degree

of multiprogramming
 another process added to the system

 Thrashing  a process is busy swapping pages in
and out

SHANDONG UNIVERSITY 53

and out

Thrashing (Cont.)

SHANDONG UNIVERSITY 54

Demand Paging and Thrashing
 Why does demand paging work?

Locality modelLocality model
 Process migrates from one locality to another
 Localities ma o erlap Localities may overlap

 Why does thrashing occur?
 size of locality > total memory sizey y

SHANDONG UNIVERSITY 55

Locality In A Memory-Reference Pattern

SHANDONG UNIVERSITY 56

Working-Set Model
   working-set window  a fixed number of page

references
Example: 10,000 instruction

 WSSi (working set of Process Pi) =i (g i)
total number of pages referenced in the most recent 
(varies in time)
 if  too small will not encompass entire locality
 if  too large will encompass several localities
 if  =   will encompass entire program

 D =  WSSi  total demand frames
 if D > m  Thrashing
 Policy if D > m, then suspend one of the processes

SHANDONG UNIVERSITY 57

y , p p

Working-set model

SHANDONG UNIVERSITY 58

Keeping Track of the Working Set
 Approximate with interval timer + a reference

bit
 Example:  = 10,000
 Timer interrupts after every 5000 time units Timer interrupts after every 5000 time units
 Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and set the Whenever a timer interrupts copy and set the

values of all reference bits to 0
 If one of the bits in memory = 1  page in workingIf one of the bits in memory 1  page in working

set
 Why is this not completely accurate? Why is this not completely accurate?
 Improvement = 10 bits and interrupt every

1000 time units
SHANDONG UNIVERSITY 59

1000 time units

Page-Fault Frequency Scheme
 Establish “acceptable” page-fault rate
 If actual rate too low process loses frame If actual rate too low, process loses frame
 If actual rate too high, process gains frame

SHANDONG UNIVERSITY 60

Memory-Mapped Files
 Memory-mapped file I/O allows file I/O to be treated

as routine memory access by mapping a disk block to
a page in memorya page in memory

 A file is initially read using demand paging A page- A file is initially read using demand paging. A page
sized portion of the file is read from the file system into
a physical page. Subsequent reads/writes to/from the
file are treated as ordinary memory accessesfile are treated as ordinary memory accesses.

 Simplifies file access by treating file I/O through Simplifies file access by treating file I/O through
memory rather than read() write() system calls

 Also allows several processes to map the same file
allowing the pages in memory to be shared

SHANDONG UNIVERSITY 61

Memory Mapped Files

SHANDONG UNIVERSITY 62

Memory-Mapped Shared Memory in Windows

SHANDONG UNIVERSITY 63

Allocating Kernel Memory
 Treated differently from user memory
 Often allocated from a free memory pool Often allocated from a free-memory pool
 Kernel requests memory for structures of varying

isizes
 Some kernel memory needs to be contiguous

SHANDONG UNIVERSITY 64

Buddy System
 Allocates memory from fixed-size segment

consisting of physically-contiguous pagesconsisting of physically contiguous pages
 Memory allocated using power-of-2 allocator
 Satisfies requests in units sized as power of 2
 Request rounded up to next highest power of 2
 When smaller allocation needed than is available,

current chunk split into two buddies of next-lower
power of 2
 Continue until appropriate sized chunk available

SHANDONG UNIVERSITY 65

Buddy System Allocator

SHANDONG UNIVERSITY 66

Slab Allocator
 Alternate strategy
 Slab is one or more physically contiguous pages
 Cache consists of one or more slabs
 Single cache for each unique kernel data structure
 E h h fill d ith bj t i t ti ti f th d t Each cache filled with objects – instantiations of the data

structure
 When cache created, filled with objects marked as , j

free
 When structures stored, objects marked as used
 If l b i f ll f d bj t t bj t ll t d If slab is full of used objects, next object allocated

from empty slab
 If no empty slabs, new slab allocatedIf no empty slabs, new slab allocated

 Benefits include no fragmentation, fast memory
request satisfaction

SHANDONG UNIVERSITY 67

Slab Allocation

SHANDONG UNIVERSITY 68

Slab Allocation

SHANDONG UNIVERSITY 69

Other Issues -- Prepaging
 Prepaging
 To reduce the large number of page faults thatTo reduce the large number of page faults that

occurs at process startup
 Prepage all or some of the pages a process will p g p g p

need, before they are referenced
 But if prepaged pages are unused, I/O and memory

was wasted
 Assume s pages are prepaged and α of the pages

is sedis used
 Is cost of s * α save pages faults > or < than the cost

of prepagingof prepaging
s * (1- α) unnecessary pages?

 α near zero  prepaging loses

SHANDONG UNIVERSITY 70

Other Issues – Page Size
 Page size selection must take into

consideration:consideration:
 fragmentation
 table si e table size
 I/O overhead
 locality

SHANDONG UNIVERSITY 71

Other Issues – TLB Reach
 TLB Reach - The amount of memory accessible from

the TLB
 TLB Reach = (TLB Size) X (Page Size)
 Ideally the working set of each process is stored in Ideally, the working set of each process is stored in

the TLB
 Otherwise there is a high degree of page faultsOtherwise there is a high degree of page faults

 Increase the Page Size
 This may lead to an increase in fragmentation as not all This may lead to an increase in fragmentation as not all

applications require a large page size
 Provide Multiple Page Sizesp g
 This allows applications that require larger page sizes the

opportunity to use them without an increase in fragmentation

SHANDONG UNIVERSITY 72

Other Issues – Program Structure
 Program structure

 Int[128,128] data;
 E h i t d i Each row is stored in one page
 Program 1

for (j = 0; j <128; j++)(j ; j ; j)
for (i = 0; i < 128; i++)

data[i,j] = 0;

128 x 128 = 16,384 page faults

 Program 2 Program 2
for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)
data[i j] = 0;data[i,j] = 0;

128 page faults

SHANDONG UNIVERSITY 73

Other Issues – I/O interlock
 I/O Interlock – Pages must sometimes be

locked into memorylocked into memory

 Consider I/O - Pages that are used for copying
a file from a device must be locked from being
selected for eviction by a page replacement
algorithmg

SHANDONG UNIVERSITY 74

Reason Why Frames Used For I/O Must Be In Memory

SHANDONG UNIVERSITY 75

Operating System Examples
 Windows XP

 Solaris

SHANDONG UNIVERSITY 76

Windows XP
 Uses demand paging with clustering. Clustering

brings in pages surrounding the faulting page.
 P i d ki t i i d Processes are assigned working set minimum and

working set maximum
 Working set minimum is the minimum number of Working set minimum is the minimum number of

pages the process is guaranteed to have in memory
 A process may be assigned as many pages up to its

ki t iworking set maximum
 When the amount of free memory in the system falls

below a threshold automatic working set trimmingbelow a threshold, automatic working set trimming
is performed to restore the amount of free memory

 Working set trimming removes pages from processes g g p g p
that have pages in excess of their working set
minimum

SHANDONG UNIVERSITY 77

Solaris
 Maintains a list of free pages to assign faulting

processes
 Lotsfree – threshold parameter (amount of free

memory) to begin paging
 Desfree – threshold parameter to increasing paging
 Minfree – threshold parameter to being swapping
 Paging is performed by pageout process
 Pageout scans pages using modified clock algorithm
 Scanrate is the rate at which pages are scanned. This

ranges from slowscan to fastscan
 P t i ll d f tl d di th Pageout is called more frequently depending upon the

amount of free memory available

SHANDONG UNIVERSITY 78

Solaris 2 Page Scanner

SHANDONG UNIVERSITY 79

Assignments
 9.4 9.10 9.17 9.18

SHANDONG UNIVERSITY 80

End of Chapter 9End of Chapter 9

Any Question?

