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Objectives
 To describe the benefits of a virtual memory 

systemsystem

 T l i th t f d d i To explain the concepts of demand paging, 
page-replacement algorithms, and allocation of 

fpage frames

 To discuss the principle of the working-set 
modelmodel
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Background
 Normal method for memory management
 One time One time
 Stay in memory for ever

 A t ll th ti i t d d ll Actually, the entire program is not needed all 
the time:
 The code to handle unusual conditions
 Arrays, lists and tablesy ,
 Certain options and features of a program
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Background
 Problems
 Big program Big program
 Occupy memory

 S l ti Solution
 Increase your memory capacity
 Other technologies: dynamic load, overlap, swap
 Virtual memoryy

SHANDONG UNIVERSITY 5



Background
 Virtual memory – separation of user logical 

memory from physical memorymemory from physical memory.
 Only part of the program needs to be in memory for 

executionexecution
 Logical address space can therefore be much 

larger than physical address spacelarger than physical address space
 Allows address spaces to be shared by several 

processesprocesses
 Allows for more efficient process creation
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Virtual Memory That is Larger Than Physical Memory
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Virtual-address Space
 It refers to the logical view of how a process is stored in memory
 It begins at a certain logical address and exists in contiguous memory.

SHANDONG UNIVERSITY 8



Shared Library Using Virtual Memory
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Technologies to implement VM
 Virtual memory can be implemented via:
 Demand paging Demand paging 
 Demand segmentation
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Demand Paging
 Bring a page into memory only when it is needed
 Less I/O needed
 Less memory needed 
 Faster response
 More users

 Page is needed  reference to it
 invalid reference  abort
 not-in-memory  bring to memory

 Lazy swapper – never swaps a page into memory 
l ill b d dunless page will be needed

 Swapper that deals with pages is a pager
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Transfer of a Paged Memory to Contiguous Disk Space
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Valid-Invalid Bit
 With each page table entry a valid–invalid bit is associated

(v  in-memory, i  not-in-memory)
 Initially valid–invalid bit is set to i on all entries
 E l f t bl h t Example of a page table snapshot:

v
Frame # valid-invalid bit

v
v
v
i

….

i
i

page table

 During address translation, if valid–invalid bit in page table entry
is i  page fault

SHANDONG UNIVERSITY 13



Page Table When Some Pages Are Not in Main Memory
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Page Fault
 If there is a reference to a page, first reference to that 

page will trap to operating system:p g p p g y
page fault

1 Operating system looks at another table to decide:1. Operating system looks at another table to decide:
 Invalid reference  abort
 Just not in memoryJust not in memory

2. Get empty frame
3 Swap page into frame3. Swap page into frame
4. Reset tables
5 S t lid ti bit5. Set validation bit = v
6. Restart the instruction that caused the page fault
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Steps in Handling a Page Fault
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Demand paging
 Pure demand paging
 Never bring a page into memory until it is required Never bring a page into memory until it is required.

 Locality of reference
 The hardware to support demand paging
 Page tableg
 Secondary memory
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Performance of Demand Paging
 Page Fault Rate 0  p  1.0
 if p = 0 no page faultsif p  0 no page faults 
 if p = 1, every reference is a fault

 Effective Access Time (EAT)
EAT = (1 – p) x memory accessEAT = (1 p) x memory access

+ p (page fault overhead
t+ swap page out

+ swap page in
+ restart overhead

)
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Demand Paging Example
 Memory access time = 200 nanoseconds

 Average page-fault service time = 8 milliseconds

 EAT = (1 – p) x 200 + p (8 milliseconds) 
= (1 p x 200 + p x 8 000 000= (1 – p  x 200 + p x 8,000,000 
= 200 + p x 7,999,800

 If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds. 
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Process Creation
 Virtual memory allows other benefits during 

process creation:process creation:

C W it- Copy-on-Write

- Memory-Mapped Files (later)
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Copy-on-Write
 Copy-on-Write (COW) allows both parent and 

child processes to initially share the same p y
pages in memory

If either process modifies a shared page, only 
then is the page copied

 COW allows more efficient process creation as COW allows more efficient process creation as 
only modified pages are copied

 Free pages are allocated from a pool of 
zeroed out pages
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vfork
 UNIX系统的某些版本提供fork调用的变种，比

如：vfork如：vfork。

 Vfork产生的子进程会使用父进程的所有地址空
间间
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Before Process 1 Modifies Page C
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After Process 1 Modifies Page C
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What happens if there is no free frame?
 Page replacement – find some page in 

memory but not really in use swap it outmemory, but not really in use, swap it out
 algorithm
 performance want an algorithm which will result performance – want an algorithm which will result 

in minimum number of page faults
 S b b ht i t Same page may be brought into memory 

several times
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Need For Page Replacement
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Basic Page Replacement
1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use itIf there is a free frame, use it
- If there is no free frame, use a page 

replacement algorithm to select a victimep ace e t a go t to se ect a ct
frame

3. Bring  the desired page into the (newly) free 
frame; update the page and frame tablesframe; update the page and frame tables

4 Restart the process
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Page Replacement
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Page Replacement
 Prevent over-allocation of memory by modifying page-

fault service routine to include page replacementp g p
 Use modify (dirty) bit to reduce overhead of page 

transfers – only modified pages are written to disky p g
 Page replacement completes separation between 

logical memory and physical memory – large virtual g y p y y g
memory can be provided on a smaller physical 
memory

 Two major problems to implement demand paging
 Frame-allocation algorithmg
 Page-replacement algorithm
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Page Replacement Algorithms
 Want lowest page-fault rate

 Evaluate algorithm by running it on a particular string 
of memory references (reference string) andof memory references (reference string) and 
computing the number of page faults on that string

 In all our examples, the reference strings are as 
follows:follows: 

1 2 3 4 1 2 5 1 2 3 4 51, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1
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Graph of Page Faults Versus The Number of Frames
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FIFO Page Replacement

15 page faults
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FIFO Algorithm-- Belady’s Anomaly
 在FIFO算法中，有时侯帧数的增加反而会使缺页次数增加，

如下例：number of frames is 3 or 4
 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
 3 frames (3 pages can be in memory at a time per process)

1          2         3         4         1         2         5      1, 2      3         4        5

1 1 44 4 51 5 5

2 1

2

2

3

1

3

1

2

2

3

3

2

3

423 3 23 2 4

9 page faults
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Belady’s Anomaly

1          2         3         4         1         2         5        1        2        3         4        5

1 1 1 1 4 45 5 5 51 1

2

1

2

3

1

2

3

4

1

2

4

5

2

5

2

3

5

1

3

5

1

2

5

1

23 3

4

2

3

2

3

3

4

3

4

2

4

2

3

10 page faults
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FIFO Illustrating Belady’s Anomaly
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Optimal Algorithm
 Replace page that will not be used for longest 

period of timeperiod of time
 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
1 4

2

3

6 page faults

3

4 5
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Optimal Page Replacement

 How do you know this?
 Used for measuring how well your algorithm Used for measuring how well your algorithm 

performs
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Least Recently Used (LRU) Algorithm
 Reference string:  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

5

2

1

2

1

2

1

2

1

2

4

3

3

4

5

4

5

3

4

3
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LRU Algorithm (Cont.)
 Counter implementation
 Every page entry has a counter; every time page is Every page entry has a counter; every time page is 

referenced through this entry, copy the clock into 
the counterthe counter

 When a page needs to be changed, look at the 
counters to determine which are to changecounters to determine which are to change

 Problems
 S h ti Search time
 Overflow of the clock
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LRU Algorithm (Cont.)
 Stack implementation – keep a stack of page 

numbers in a double link form:numbers in a double link form:
 Page referenced:
 move it to the top move it to the top
 requires 6 pointers to be changed

 No search for replacement No search for replacement
 The top of the stack is always the most recently used 

pagepage
 The bottom is the LRU page
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Use Of A Stack to Record The Most Recent Page References
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LRU Approximation Algorithms
Reference bit
 With each page associate a bit initially = 0 With each page associate a bit, initially = 0
 When page is referenced bit set to 1
 Replace the one which is 0 (if one exists)
 We do not know the order, however

 Additional-reference-bits algorithm
 Gain additional ordering information by recording Gain additional ordering information by recording 

the reference bits at regular intervals.
 8bits 8bits
 Every 100 milliseconds
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LRU Approximation Algorithms
Second chance
 Need reference bit Need reference bit
 Clock replacement
 If page to be replaced (in clock order) has 

reference bit = 1 then:
 set reference bit 0
 leave page in memory
 replace next page (in clock order), subject to same 

rules
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Second-Chance (clock) Page-Replacement Algorithm
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Enhanced Second-Chance Algorithm
 Use an order pair: Reference bit and Modify bit
 4 possible classes:

 (0,0) neither recently used nor modified—best page to replace
 (0,1) not recently used but modified—not quite as good. The page will be 

written out before replacementwritten out before replacement
 (1,0) recently used but clean—it probably will be used again soon
 (1,1) recently used and modified– it probably will be used again soon, and ( , ) y p y g ,

the page will be need to be written out to disk before it can be replaced
 Replace the first page encountered in the lowest nonempty class
 Compared  clock algorithm, this algorithm give preference to those 

pages that have not been modified to reduce the number of I/Os 
requiredrequired

SHANDONG UNIVERSITY 45



Counting Algorithms
 Keep a counter of the number of references 

that have been made to each pagethat have been made to each page

 LFU Al ith (L t F tl U d) LFU Algorithm(Least Frequently Used):  
replaces page with smallest count

 MFU Algorithm(Most Frequently Used): g ( q y )
based on the argument that the page with the 
smallest count was probably just brought insmallest count was probably just brought in 
and has yet to be used
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Page-buffering algorithms
 Keep a pool of free frames
 The desired page is read into a free frame form The desired page is read into a free frame form 

the pool before the victim is written out.
 When the victim is later written out, its frame is 

added to the free-frame pool.

 This method can be used combined with other This method can be used combined with other 
algorithms.
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Allocation of Frames
 Each process needs minimum number of 

pagespages
 Example:  IBM 370 – 6 pages to handle SS 

MOVE i t tiMOVE instruction:
 instruction is 6 bytes, might span 2 pages
 2 pages to handle from
 2 pages to handle top g

 Two major allocation schemes
 fixed allocation fixed allocation
 priority allocation
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Fixed Allocation
 Equal allocation – For example, if there are 100 frames 

and 5 processes, give each process 20 frames.
 Proportional allocation – Allocate according to the size of 

process
fi

m
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ps

i

ii






framesofnumbertotal

processofsize

m
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spa

m

i
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Fixed Allocation
 特点

 每个进程所分配的数量会随着多道程序的级别而有 每个进程所分配的数量会随着多道程序的级别而有
所变化。多道程序程度增加，那么每个进程会失去
一些帧以提供给新来进程使用。反之，原来分配给些帧以提供给新来进程使用。反之，原来分配给
离开进程的帧可以分配给剩余进程

 高优先级进程与低优先级进程在这种分配方式下没 高优先级进程与低优先级进程在这种分配方式下没
有任何区别
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Priority Allocation
 Use a proportional allocation scheme using 

priorities rather than sizepriorities rather than size

 If P t f lt If process Pi generates a page fault,
 select for replacement one of its frames
 select for replacement a frame from a process with 

lower priority number
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Global vs. Local Allocation
 Global replacement – process selects a 

replacement frame from the set of all frames;replacement frame from the set of all frames; 
one process can take a frame from another

 L l l t h l t Local replacement – each process selects 
from only its own set of allocated frames
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Thrashing
 颠簸：进程的频繁的页调度行为
 页错误显著增加页错误显著增加

 吞吐量徒降

 有效访问时间增加

 If a process does not have “enough” pages, the page-
fault rate is very high.  This leads to:
 low CPU utilization
 operating system thinks that it needs to increase the degree 

of multiprogramming
 another process added to the system

 Thrashing  a process is busy swapping pages in 
and out
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Thrashing (Cont.)
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Demand Paging and Thrashing
 Why does demand paging work?

Locality modelLocality model
 Process migrates from one locality to another
 Localities ma o erlap Localities may overlap

 Why does thrashing occur?
 size of locality > total memory sizey y
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Locality In A Memory-Reference Pattern
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Working-Set Model
   working-set window  a fixed number of page 

references 
Example:  10,000 instruction

 WSSi (working set of Process Pi) =i ( g i)
total number of pages referenced in the most recent 
(varies in time)
 if  too small will not encompass entire locality
 if  too large will encompass several localities
 if  =   will encompass entire program

 D =  WSSi  total demand frames 
 if D > m  Thrashing
 Policy if D > m, then suspend one of the processes
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Working-set model
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Keeping Track of the Working Set
 Approximate with interval timer + a reference 

bit
 Example:  = 10,000
 Timer interrupts after every 5000 time units Timer interrupts after every 5000 time units
 Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and set the Whenever a timer interrupts copy and set the 

values of all reference bits to 0
 If one of the bits in memory = 1  page in workingIf one of the bits in memory  1  page in working 

set
 Why is this not completely accurate? Why is this not completely accurate?
 Improvement = 10 bits and interrupt every 

1000 time units
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Page-Fault Frequency Scheme
 Establish “acceptable” page-fault rate
 If actual rate too low process loses frame If actual rate too low, process loses frame
 If actual rate too high, process gains frame
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Memory-Mapped Files
 Memory-mapped file I/O allows file I/O to be treated 

as routine memory access by mapping a disk block to 
a page in memorya page in memory

 A file is initially read using demand paging A page- A file is initially read using demand paging. A page
sized portion of the file is read from the file system into 
a physical page. Subsequent reads/writes to/from the 
file are treated as ordinary memory accessesfile are treated as ordinary memory accesses.

 Simplifies file access by treating file I/O through Simplifies file access by treating file I/O through 
memory rather than read() write() system calls

 Also allows several processes to map the same file 
allowing the pages in memory to be shared
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Memory Mapped Files
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Memory-Mapped Shared Memory in Windows
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Allocating Kernel Memory
 Treated differently from user memory
 Often allocated from a free memory pool Often allocated from a free-memory pool
 Kernel requests memory for structures of varying 

isizes
 Some kernel memory needs to be contiguous
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Buddy System
 Allocates memory from fixed-size segment 

consisting of physically-contiguous pagesconsisting of physically contiguous pages
 Memory allocated using power-of-2 allocator
 Satisfies requests in units sized as power of 2
 Request rounded up to next highest power of 2
 When smaller allocation needed than is available, 

current chunk split into two buddies of next-lower 
power of 2
 Continue until appropriate sized chunk available
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Buddy System Allocator
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Slab Allocator
 Alternate strategy
 Slab is one or more physically contiguous pages
 Cache consists of one or more slabs
 Single cache for each unique kernel data structure
 E h h fill d ith bj t i t ti ti f th d t Each cache filled with objects – instantiations of the data 

structure
 When cache created, filled with objects marked as , j

free
 When structures stored, objects marked as used
 If l b i f ll f d bj t t bj t ll t d If slab is full of used objects, next object allocated 

from empty slab
 If no empty slabs, new slab allocatedIf no empty slabs, new slab allocated

 Benefits include no fragmentation, fast memory 
request satisfaction
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Slab Allocation
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Slab Allocation
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Other Issues -- Prepaging
 Prepaging 
 To reduce the large number of page faults thatTo reduce the large number of page faults that 

occurs at process startup
 Prepage all or some of the pages a process will p g p g p

need, before they are referenced
 But if prepaged pages are unused, I/O and memory 

was wasted
 Assume s pages are prepaged and α of the pages 

is sedis used
 Is cost of s * α save pages faults > or < than the cost 

of prepagingof prepaging
s * (1- α) unnecessary pages?  

 α near zero  prepaging loses
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Other Issues – Page Size
 Page size selection must take into 

consideration:consideration:
 fragmentation
 table si e table size 
 I/O overhead
 locality
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Other Issues – TLB Reach
 TLB Reach - The amount of memory accessible from 

the TLB
 TLB Reach = (TLB Size) X (Page Size)
 Ideally the working set of each process is stored in Ideally, the working set of each process is stored in 

the TLB
 Otherwise there is a high degree of page faultsOtherwise there is a high degree of page faults

 Increase the Page Size
 This may lead to an increase in fragmentation as not all This may lead to an increase in fragmentation as not all 

applications require a large page size
 Provide Multiple Page Sizesp g
 This allows applications that require larger page sizes the 

opportunity to use them without an increase in fragmentation
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Other Issues – Program Structure
 Program structure

 Int[128,128] data;
 E h i t d i Each row is stored in one page 
 Program 1 

for (j = 0; j <128; j++)(j ; j ; j )
for (i = 0; i < 128; i++)

data[i,j] = 0;

128 x 128 = 16,384 page faults 

 Program 2 Program 2 
for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)
data[i j] = 0;data[i,j] = 0;

128 page faults
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Other Issues – I/O interlock
 I/O Interlock – Pages must sometimes be 

locked into memorylocked into memory

 Consider I/O - Pages that are used for copying 
a file from a device must be locked from being 
selected for eviction by a page replacement 
algorithmg
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Reason Why Frames Used For I/O Must Be In Memory
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Operating System Examples
 Windows XP

 Solaris
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Windows XP
 Uses demand paging with clustering. Clustering 

brings in pages surrounding the faulting page.
 P i d ki t i i d Processes are assigned working set minimum and 

working set maximum
 Working set minimum is the minimum number of Working set minimum is the minimum number of 

pages the process is guaranteed to have in memory
 A process may be assigned as many pages up to its 

ki t iworking set maximum
 When the amount of free memory in the system falls 

below a threshold automatic working set trimmingbelow a threshold, automatic working set trimming
is performed to restore the amount of free memory

 Working set trimming removes pages from processes g g p g p
that have pages in excess of their working set 
minimum
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Solaris
 Maintains a list of free pages to assign faulting 

processes
 Lotsfree – threshold parameter (amount of free 

memory) to begin paging
 Desfree – threshold parameter to increasing paging
 Minfree – threshold parameter to being swapping
 Paging is performed by pageout process
 Pageout scans pages using modified clock algorithm
 Scanrate is the rate at which pages are scanned. This 

ranges from slowscan to fastscan
 P t i ll d f tl d di th Pageout is called more frequently depending upon the 

amount of free memory available
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Solaris 2 Page Scanner
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Assignments
 9.4   9.10   9.17   9.18
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End of Chapter 9End of Chapter 9

Any Question?


