Chapter 9 Virtual Memory

SHANDONG UNIVERSITY

Background
Demand Paging
Copy-on-Write

Page Replacement
Allocation of Frames
Thrashing

Allocating Kernel Memory
Other Considerations
Operating-System Examples

SHANDONG UNIVERSITY 2

To describe the benefits of a virtual memory
system

To explain the concepts of demand paging,
page-replacement algorithms, and allocation of
page frames

To discuss the principle of the working-set
model

SHANDONG UNIVERSITY 3

Background

Normal method for memory management
B Onetime
B Stay in memory for ever

Actually, the entire program is not needed all
the time:

B The code to handle unusual conditions

B Arrays, lists and tables

B Certain options and features of a program

SHANDONG UNIVERSITY 4

Background

Problems

B Big program

B Occupy memory

Solution

B [ncrease your memory capacity

B Other technologies: dynamic load, overlap, swap
B Virtual memory

SHANDONG UNIVERSITY S

Background

Virtual memory — separation of user logical
memory from physical memory.

B Only part of the program needs to be in memory for
execution

B [ogical address space can therefore be much
larger than physical address space

B Allows address spaces to be shared by several
processes

B Allows for more efficient process creation

SHANDONG UNIVERSITY 6

Virtual Memory That is Larger Than Physical Memory

page O
page 1
page 2 N
—
\ >
memory
map v
page v physical
memory

virtual
memory

SHANDONG UNIVERSITY 7

Virtual-address Space

[0 It refers to the logical view of how a process is stored in memory
[0 It begins at a certain logical address and exists in contiguous memory.
Max

stack

heap

data

code

Shared Library Using Virtual Memory

stack

l

shared library

!

heap

data

code

shared
pages

stack

l

shared library

heap

data

code

SHANDONG UNIVERSITY

Technologies to iImplement VM

Virtual memory can be implemented via:
B Demand paging
B Demand segmentation

SHANDONG UNIVERSITY 10

Demand Paging

Bring a page into memory only when it is heeded
B |ess /O needed

B [ess memory needed

B Faster response

B More users

Page is needed = reference to it

B invalid reference = abort

B not-in-memory = bring to memory

Lazy swapper — never swaps a page into memory
unless page will be needed

B Swapper that deals with pages is a pager

SHANDONG UNIVERSITY 11

Transfer of a Paged Memory to Contiguous Disk Space

.
. R —

swap out o[1101 2[]3[]

program O

A o1 503 oL 703

/ 8] 9[J10[111[]
121314157
-l ~_ swapin 16017 (118 [J19L]
20122123 []
-

main
memory

SHANDONG UNIVERSITY 12

Valid-lnvalid Bit

With each page table entry a valid—invalid bit is associated
(v = in-memory, i = not-in-memory)

L0 Initially valid—invalid bit is set to i on all entries
[0 Example of a page table snapshot:

Frame # valid-invalid bit

page table

O During address translation, if valid—invalid bit in page table entry
IS | = page fault

SHANDONG UNIVERSITY

13

Page Table When Some Pages Are Not in Main Memory

~N o o B W N = O

@l || nk | G | @) || G | lee) | e

H

logical
memory

frame

valid—invalid
bit

N Y

4 v

6

[
v
[
[
v
[

~N O 0 e N2 O

page table

o o ~N O o e W M = O

—_
o

=k
"

—_
\e]

w

—
S

15

physical memory

i N
R ——

HaERN
(][] 8]
] [o] [€]

HEEEN
-

SHANDONG UNIVERSITY

Page Fault

KR 1 G o | AR

If there is a reference to a page, first reference to that
page will trap to operating system:

page fault

Operating system looks at another table to decide:
B [nvalid reference = abort
B Just not in memory

Get empty frame

Swap page into frame

Reset tables

Set validation bit = v

Restart the instruction that caused the page fault

SHANDONG UNIVERSITY 15

Steps in Handling a Page Fault

page is on
backing store /d
operating
system @
reference
@ trap
load M |« X i
restart page table
instruction
free frame = -
reset page bring in
table missing page
physical
memory

SHANDONG UNIVERSITY 16

Demand paging

Pure demand paging
B Never bring a page into memory until it is required.

Locality of reference
The hardware to support demand paging

B Page table
B Secondary memory

SHANDONG UNIVERSITY

17

Performance of Demand Paging

Page Fault Rate 0<p < 1.0
B if p = 0 no page faults
B if p=1, every reference is a fault

Effective Access Time (EAT)
EAT = (1 — p) X memory access
+ p (page fault overhead
+ swap page out
+ swap page In
+ restart overhead

)

SHANDONG UNIVERSITY 18

Demand Paging Example

Memory access time = 200 nanoseconds

Average page-fault service time = 8 milliseconds

EAT = (1 —p) x 200 + p (8 milliseconds)
=(1-p x200 + p x 8,000,000
=200 + p x 7,999,800

If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.

SHANDONG UNIVERSITY 19

Process Creation

Virtual memory allows other benefits during
process creation:

- Copy-on-Write

- Memory-Mapped Files (later)

SHANDONG UNIVERSITY 20

Copy-on-Write

Copy-on-Write (COW) allows both parent and
child processes to initially share the same
pages in memory

If either process modifies a shared page, only
then is the page copied

COW allows more efficient process creation as
only modified pages are copied

Free pages are allocated from a pool of
zeroed-out pages

SHANDONG UNIVERSITY 21

UN I X ZR 5) L6 B AR For kB PR HOES T, L
u0: vforko,

Vfork =4 B FiHiE = A A iHIZRI R Al =
5]

SHANDONG UNIVERSITY

22

Before Process 1 Modifies Page C

physical
process; memory process,

—>» pageA &

it page B 1
—» page C —J

SHANDONG UNIVERSITY 23

After Process 1 Modifies Page C

physical
pProcess, meriiory pProcesss

Figure 9.8 After process 1 modifies page C.

SHANDONG UNIVERSITY 24

What happens if there is no free frame?

Page replacement — find some page in

memory, but not really in use, swap it out

B algorithm

B performance — want an algorithm which will result
IN minimum number of page faults

Same page may be brought into memory

several times

SHANDONG UNIVERSITY 25

Need For Page Replacement

valid—invalid
0 H frame bit monitor
1| load M \ ‘(l //_\
oa _//
PC —> 3 v
2 J 4 |v D
5 |v
logical memory page table load M
for user 1 for user 1
J
A
valid—invalid E
0 A frame bt
. J physical
1 B 6 |v memory w
2 D i
2 |v
3 E 7 |V
logical memory page table
for user 2 for user 2

SHANDONG UNIVERSITY

26

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there Is no free frame, use a page
replacement algorithm to select a victim
frame

3. Bring the desired page into the (newly) free
frame; update the page and frame tables

4. Restart the process

SHANDONG UNIVERSITY 27

Page Replacement

frame valid—invalid bit

N Y .

swap out
Change ViCtim
0 |i to invalid page
t|v @/V
(:) f| victim 9

reset page ‘h.-."in@&:

table for =
page table

new page <:>swap :::::::::::

desired
page in

physical
memory

SHANDONG UNIVERSITY 28

Page Replacement

Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement

Use modify (dirty) bit to reduce overhead of page
transfers — only modified pages are written to disk

Page replacement completes separation between
logical memory and physical memory — large virtual
memory can be provided on a smaller physical
memory

Two major problems to implement demand paging
B Frame-allocation algorithm
B Page-replacement algorithm

SHANDONG UNIVERSITY 29

Page Replacement Algorithms

Want lowest page-fault rate

Evaluate algorithm by running it on a particular string
of memory references (reference string) and
computing the number of page faults on that string

In all our examples, the reference strings are as
follows:

1,2,3,4,1,2,5,1,2,3,4,5
7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

SHANDONG UNIVERSITY 30

of Page Faults Versus The Number of Frames

16 |-
@ 14 |
=
8 12 F
@
& 10|
o
° 8}
2
e 6
3
o 4_
2_
| | | | | |
1 2 3 4 5 6
number of frames

SHANDONG UNIVERSITY 31

FIFO Page Replacement

reference string
7 01 2 0O 8 0 4 2 3 0 8 2 1 2 0 1 7 0 1

| = = 2 2| (2] |4] |4 |4] |0 0| |0 T
0| 0] 0 3| (3| |3]| |2]| (2] |2 1. 1| (0] |O
1 |1 11 (0] |0 |O| 3] |3 3| |2 21 |12 |1

page frames

15 page faults

SHANDONG UNIVERSITY 32

FIFO Algorithm-- Belady’s Anomaly

O 7EFIFOEAP, BEMEMEAIEIMN KR M ERRITEIEM,

a0 T~ 451 : number of frames is 3 or 4

[l Referencestring: 1, 2,3,4,1,2,5,1,2,3,4,5
[l 3 frames (3 pages can be in memory at a time per process)

3 3 3 2 2

9 page faults

SHANDONG UNIVERSITY

1,2

o o -

33

Belady’'s Anomaly

1 2 3 4
1 1 1 1
2 2 2
-
) O

4

1 2 5 1 3 5
5| |5 5 4

2| |1 1 5

= -

w

10 page faults

SHANDONG UNIVERSITY

W | N

34

FIFO lllustrating Belady’s Anomaly

16 |
o 141
S
S 12 F
O
S 10|
o
° 8}
2 6
£ l
[4_
2_
| | | | | |
1 2 3 4 5 6 /
number of frames

SHANDONG UNIVERSITY 35

Optimal Algorithm

Replace page that will not be used for longest
period of time

4 frames example
1,2,3,4,1,2,5,1,2,3,4,5

1 4

6 page faults

2
3
4

SHANDONG UNIVERSITY

36

Optimal Page Replacement

reference string
7 0 1t 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

T T - 2 - 2 o
0| (O] |O 0 < 0 0 0
1 |1 3 3 3 1 1

page frames

How do you know this?

Used for measuring how well your algorithm
performs

SHANDONG UNIVERSITY 37

Least Recently Used (LRU) Algorithm
Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

1 1 1 11|15
21121]12(|2]|]|2
31|5(|5||4]|]|4
411413313
reference string
/7 01 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
4] 14| 4] o
| [o] o] o] [o] o] |o] |3] |3 o o]
U
page frames

SHANDONG UNIVERSITY 38

LRU Algorithm (Cont.)

Counter implementation

B Every page entry has a counter; every time page is
referenced through this entry, copy the clock into

the counter

B \When a page needs to be changed, look at the
counters to determine which are to change

Problems
B Search time
B Overflow of the clock

SHANDONG UNIVERSITY 39

LRU Algorithm (Cont.)

Stack implementation — keep a stack of page
numbers in a double link form:

B Page referenced:
[J move it to the top
] requires 6 pointers to be changed

B No search for replacement
[1 The top of the stack is always the most recently used

NnNanNno

'J(]UC
1 The bottom is the LRU page

SHANDONG UNIVERSITY 40

Use Of A Stack to Record The Most Recent Page References

reference string

4 7 0 7 1 0 1 2 1
2 7
1 2
0 1
7 0
4 4
stack stack
before after
a b

SHANDONG UNIVERSITY

41

LRU Approximation Algorithms

[] Reference bit
B \With each page associate a bit, initially = 0
B \When page is referenced bit setto 1
B Replace the one which is O (if one exists)
We do not know the order, however

1 Additional-reference-bits algorithm

B Gain additional ordering information by recording
the reference bits at regular intervals.

B 38bits
B Every 100 milliseconds

SHANDONG UNIVERSITY 42

LRU Approximation Algorithms

[l Second chance

B Need reference bit
B Clock replacement

B If page to be replaced (in clock order) has
reference bit = 1 then:

set reference bit O
leave page iIn memory

replace next page (in clock order), subject to same
rules

SHANDONG UNIVERSITY 43

Second-Chance (clock) Page-Replacement Algorithm

reference pages
bits

0
0
next 1

victim #
]
0
1
1

circular queue of pages
(a)

reference pages
bits

0

< o & &

circular queue of pages

(b)

SHANDONG UNIVERSITY

44

Enhanced Second-Chance Algorithm

[J Use an order pair: Reference bit and Modify bit
1 4 possible classes:

(0,0) neither recently used nor modified—Dbest page to replace

(0,1) not recently used but modified—not quite as good. The page will be
written out before replacement

(1,0) recently used but clean—it probably will be used again soon

(1,1) recently used and modified- it probably will be used again soon, and
the page will be need to be written out to disk before it can be replaced

[J Replace the first page encountered in the lowest nonempty class

[0 Compared clock algorithm, this algorithm give preference to those
pages that have not been modified to reduce the number of 1/Os
required

SHANDONG UNIVERSITY 45

Counting Algorithms

Keep a counter of the number of references
that have been made to each page

LFU Algorithm(Least Frequently Used):
replaces page with smallest count

MFU Algorithm(Most Frequently Used):
based on the argument that the page with the
smallest count was probably just brought in
and has yet to be used

SHANDONG UNIVERSITY 46

Page-buffering algorithms

Keep a pool of free frames

The desired page is read into a free frame form
the pool before the victim is written out.

When the victim is later written out, its frame Is
added to the free-frame pool.

This method can be used combined with other
algorithms.

SHANDONG UNIVERSITY 47

Allocation of Frames

Each process needs minimum number of
pages

_1 Example: IBM 370 — 6 pages to handle SS
MOVE instruction:

B |nstruction is 6 bytes, might span 2 pages

B 2 pages to handle from

B 2 pages to handle to

Two major allocation schemes
B fixed allocation
B priority allocation

SHANDONG UNIVERSITY 48

Fixed Allocation

[l Equal allocation — For example, if there are 100 frames
and 5 processes, give each process 20 frames.

[l Proportional allocation — Allocate according to the size of

Process
S; = Size of process p;

S = ZS,-
m = total number of frames

. S;
a; = allocation for p; =—-xm
S
m =64
Si = 10

32 = 127

al ﬂ X 64 5
137

a, = 22 x 64 ~ 59
137

SHANDONG UNIVERSITY

49

Fixed Allocation

R

B FPirEMOENSESMEE S EREFNRmE
Fhtt. ZigizFieEEm, BT HIERERE
— R RERAEER. Rz, RRTES
SRR LT Bo e R RS

B SHARHESRMARHABEEIMAE TR TR

BEFX A

SHANDONG UNIVERSITY

50

Priority Allocation

Use a proportional allocation scheme using
priorities rather than size

If process P; generates a page fault,
B select for replacement one of its frames

B select for replacement a frame from a process with
lower priority number

SHANDONG UNIVERSITY 51

Global vs. Local Allocation

Global replacement — process selects a
replacement frame from the set of all frames;
one process can take a frame from another

Local replacement — each process selects
from only its own set of allocated frames

SHANDONG UNIVERSITY 52

Thrashing

it
i
N

HifE : HIERSNE R T
B TURIREEIEM

B FHEREME

B B30T ERE A

If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:

B low CPU utilization

B operating system thinks that it needs to increase the degree
of multiprogramming

B another process added to the system

Thrashing = a process is busy swapping pages in
and out

SHANDONG UNIVERSITY 53

Thrashing (Cont.)

CPU utilization

>

| thrashing

degree of multiprogramming

SHANDONG UNIVERSITY

o4

Demand Paging and Thrashing

Why does demand paging work?
Locality model
B Process migrates from one locality to another

B | ocalities may overlap

Why does thrashing occur?
2. size of locality > total memory size

SHANDONG UNIVERSITY 55

Locality In A Memory-Reference Pattern

il . l”ﬂ I_!i.'| l.h '-|,|i'i ||||||_ :||| ||| .|:| |1|”|.
i .|‘ | h“ I ||. : - ¢

il

|||.I1I.. St
J ' |i- '
@ |"|]|.
& Il
=] {1 ffii
g | i |
- 2 I|| ! N
= ‘l 1|
|
m |}

e \UU :.!!';|||.:j||’_|}

' e T ! Iy
|||||-l|||!:|--|||!||!|!!!I!!l!l!\lw !|@|||!m! il iiii-|||||\“| ullll.ﬂll .l" ll'!!'-

xecution time ——

SHANDONG UNIVERSITY 56

Working-Set Model

A = working-set window = a fixed number of page
references

Example: 10,000 instruction

WSS, (working set of Process P) =

total number of pages referenced in the most recent A
(varies in time)

B if A too small will not encompass entire locality

B if Atoo large will encompass several localities

B if A= = will encompass entire program

D =% WSS, = total demand frames
If D > m = Thrashing

Policy if D > m, then suspend one of the processes

SHANDONG UNIVERSITY 57

page reference table
. ..2615777751623412344434344413234443444 ...

R T

a‘
WS(t,) = {1 2567}

SHANDONG UNIVERSITY

Working-set model

58

Keeping Track of the Working Set

Approximate with interval timer + a reference
bit

Example: A = 10,000

B Timer interrupts after every 5000 time units

B Keep in memory 2 bits for each page

B Whenever a timer interrupts copy and set the
values of all reference bits to 0

B If one of the bits iIn memory = 1 = page in working
set

Why is this not completely accurate?

Improvement = 10 bits and interrupt every
1000 time units

SHANDONG UNIVERSITY 959

Page-Fault Frequency Scheme

Establish “acceptable” page-fault rate
B If actual rate too low, process loses frame
B [f actual rate too high, process gains frame

increase number
of frames

upper bound

page-fault rate

lower bound
decrease number
of frames

number of frames

SHANDONG UNIVERSITY 60

Memory-Mapped Files

Memory-mapped file I/O allows file 1/O to be treated
as routine memory access by mapping a disk block to
a page in memory

A file is initially read using demand paging. A page-
sized portion of the file Is read from the file system into
a physical page. Subsequent reads/writes to/from the
file are treated as ordinary memory accesses.

Simplifies file access by treating file I/O through
memory rather than read() write() system calls

Also allows several processes to map the same file
allowing the pages in memory to be shared

SHANDONG UNIVERSITY 61

V)
D
=
(e
O
Q
Q
©
=
-
O
-
5,
=

process B
virtual memory

~ ||| |w]|©
| | | L L |
I B A R T L T T 1
I LT O 1
I I _I ||||||||| | |
L b m e b e e e oo V| b
: b= | L1
== ! __,_‘ __‘|_‘
¥ ¥ 2 Yy ¥ ©
>
o To)
-
) Q@
- S =
o © —|LD || &
© on| ©
0 o
g,
F= al
o%
Ap A Y X! Y ¥ —
R e I I
| “ SN P R
1 p -t 1
Il r—¢+tr-I-——=—-=-=-=== !
N N B B W
<€
@ O
||| |wlo mm
O ®©
a2
| -
=

62

SHANDONG UNIVERSITY

Memory-Mapped Shared Memory in Windows

Process,

shared
memory

memory-mapped
file

shared
memory

Process,

shared
memory

SHANDONG UNIVERSITY

63

Allocating Kernel Memory

Treated differently from user memory

Often allocated from a free-memory pool

B Kernel reqguests memory for structures of varying
sizes

B Some kernel memory needs to be contiguous

SHANDONG UNIVERSITY 64

Buddy System

Allocates memory from fixed-size segment
consisting of physically-contiguous pages
Memory allocated using power-of-2 allocator
B Satisfies requests in units sized as power of 2

B Request rounded up to next highest power of 2

B \When smaller allocation needed than is available,

current chunk split into two buddies of next-lower
power of 2

[Continue until appropriate sized chunk available

SHANDONG UNIVERSITY 65

Buddy System Allocator

physically contiguous pages
256 KB
128 KB 128 KB
o AR
64 KB 64 KB
B, B
J L
32 KB| (32 KB

S R

SHANDONG UNIVERSITY 66

Slab Allocator

Alternate strategy
Slab is one or more physically contiguous pages
Cache consists of one or more slabs

Single cache for each unique kernel data structure

B Each cache filled with objects — instantiations of the data
structure

When cache created, filled with objects marked as
free

When structures stored, objects marked as used

If slab is full of used objects, next object allocated
from empty slab

B |f no empty slabs, new slab allocated

Benefits include no fragmentation, fast memory
request satisfaction

SHANDONG UNIVERSITY 67

Slab Allocation

Slab Class: 1 Slab Class: 2
Chunks: | Chunks:
88 bytes 88 bytes 112 bytes| |112 bytes
88 bytes | ... lots more! 112 bytes| ... lots more!
Slab Class: 3 Slab Class: n
Chunks: ' Chunks:
144 bytes| |144 bytes nbytes | | nbytes
144 bytes| .. lots more! n bytes | . more!

SHANDONG UNIVERSITY 68

Slab Allocation

kernel objects

3 KB
objects

7 KB
objects

caches

WA

slabs

physical
contiguous
pages

SHANDONG UNIVERSITY

69

Other Issues -- Prepaging

Prepaging

B To reduce the large number of page faults that
OCcurs at process startup

B Prepage all or some of the pages a process will
need, before they are referenced

B But if prepaged pages are unused, I/O and memory
was wasted

B Assume s pages are prepaged and a of the pages

IS used

L1 Is cost of s * a save pages faults > or < than the cost
of prepaging
S * (1- a) unnecessary pages?

[l a near zero = prepaging loses

SHANDONG UNIVERSITY 70

Other Issues — Page Size

Page size selection must take into
consideration:

B fragmentation
B table size

B |/O overhead
B [ocality

SHANDONG UNIVERSITY 71

Other Issues — TLB Reach

LB Reach - The amount of memory accessible from
the TLB

TLB Reach = (TLB Size) X (Page Size)

Ideally, the working set of each process is stored In
the TLB

B Otherwise there is a high degree of page faults
Increase the Page Size

B This may lead to an increase in fragmentation as not all
applications require a large page size

Provide Multiple Page Sizes

B This allows applications that require larger page sizes the
opportunity to use them without an increase in fragmentation

SHANDONG UNIVERSITY 12

Other Issues — Program Structure

1 Program structure
B [nt[128,128] data,
B Each row is stored in one page
B Programl
for (j = 0; j <128; j++)
for 1=0;1<128; i++)
datali,j] = O;

128 x 128 = 16,384 page faults

N

B Program
f 0;1<128; i++)
for (j =0;] <128; j++)
datali,j] = O;

128 page faults

SHANDONG UNIVERSITY 73

Other Issues — I/O interlock

locked into memory

Consider I/O - Pages that are usec
a file from a device must be lockec

selected for eviction by a page rep
algorithm

SHANDONG UNIVERSITY

/O Interlock — Pages must sometimes be

for copying
from being
acement

74

Reason Why Frames Used For I/O Must Be In Memory

buffer i @

disk drive

SHANDONG UNIVERSITY 75

Operating System Examples
Windows XP

Solaris

SHANDONG UNIVERSITY 76

Windows XP

Uses demand paging with clustering. Clustering
brings in pages surrounding the faulting page.

Processes are assigned working set minimum and
working set maximum

Working set minimum is the minimum number of
pages the process Is guaranteed to have in memory

A process may be assigned as many pages up to its
working set maximum

When the amount of free memory in the system falls
below a threshold, automatic working set trimming
Is performed to restore the amount of free memory

Working set trimming removes pages from processes
that have pages in excess of their working set
minimum

SHANDONG UNIVERSITY a4

Solaris

Maintains a list of free pages to assign faulting
processes

Lotsfree — threshold parameter (amount of free
memory) to begin paging

Desfree — threshold parameter to increasing paging
Minfree — threshold parameter to being swapping
Paging is performed by pageout process

Pageout scans pages using modified clock algorithm

Scanrate is the rate at which pages are scanned. This
ranges from slowscan to fastscan

Pageout is called more frequently depending upon the
amount of free memory available

SHANDONG UNIVERSITY /8

Solaris 2 Page Scanner

8192

scan rate

100
slowscan

fastscan

I I |
minfree desfree lotsfree
amount of free memory

SHANDONG UNIVERSITY

79

94 9.10 9.1/ 9.18

SHANDONG UNIVERSITY 80

End of Chapter 9

Any Question?

